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Abstract

Out-of-core processing aims to handle large amount of data when
the memory is limited. There exists several out-of-core applications
including disk-memory and CPU-GPU processing. Ideally, these
out-of-core applications can be expected to be close to the peak
performance of the in-core computations, if the data movement
between different memory hierarchies can be overlapped by the
in-core computations effectively. However, with the emergence
of matrix accelerators such as TensorCore GPU, the imbalance
between the speed of computations and data movement is further
exacerbated, such that even high computation intensity kernels can
be dominated by data movement cost. In such cases, the algorithms
need to be redesigned to reduce communication volume and overlap
the data movement by pipelines. In this paper, we select classic
Gram-Schmidt QR factorization as an example to illustrate our
recursive strategy, which shows smaller amount of data movement
and higher overlapping ratio than the conventional blocking QR
factorization algorithm. The results suggest this technique can
potentially be applied to broader matrix computations kernels.
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1 Introduction

Out-of-core (OOC) means out of memory (when main memory was
called core memory a long time ago). However, OOC has received
less attention than distributed parallel computing but we think
OOC has its use cases in the era of data-centric computing. Both
can enable solving bigger problems that cannot fit in the memory
of a single node, but the latter also entails using multiple processing
units. In the era of vector and matrix accelerators, we think OOC is
becoming more important as it enables an increasingly common
use case because of the convenience of using a single node and the
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ubiquitous accessibility of such platform. Furthermore, for some
problems, a single accelerator can rival the speed of a medium
sized cluster of CPUs. For example, a single A100 GPU with Ten-
sorCore has a peak performance at around 300 TFLOPS, which
is equal to about thousands of modern high-end CPU cores with
AVX512 vector units. Yet, the memory capacity of the accelerator
is often very limited. The limited problem size due to insufficient
memory capacity greatly limits the potential of the extremely fast
accelerator.

A particular class of problems that potentially benefits from
OOC with accelerators is dense linear algebra. In this paper, we
explore techniques to enable efficient OOC computing on extremely
fast accelerators such that the computing is no longer limited by
scarce GPU memory. The key challenge is the management of data
movement. It has been shown that the optimal data movement
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Now with the TensorCore unit (a.k.a. neural engines, neural
processors, or matrix accelerators) the ratio of matrix computa-
tion speed and data movement speed is getting extremely high.
On a modern Volta or Ampere NVIDIA GPU cards with Tensor-
Core as matrix computing units, the Ry can be 104, while VMR,
is 10° x 10%-3 = 10143, Assuming an algorithm achieves optimal
data movement, the cost of data movement is comparable to com-
putation. Such trend is likely going to continue. With a suboptimal
data movement algorithm the communication may dominate com-
putation. In this situation, it’s critically important to minimize data
movement and increase overlapping between computation and
communication, while at the same time without increasing #flops
or decreasing the execution rate Ry significantly.

There has been a long history and interest in OOC computing
for linear algebra algorithms. And several similar OOC applications
exist that work for CPU-GPU hierarchy. For instance, BLASX [23]
and cuBLASXt provides OOC high-performance BLAS3 operations
and some other specific applications such as OOC SVD [15] and [14].
However, over a long period of accumulating faster computation
speed growth over data movement speed and with the advent of
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specialized matrix accelerator in addition to vector accelerator, the
balance between computing and communication is further skewed.
As a result, the conventional design pattern of OOC algorithms
becomes inadequate to hide the cost of data movement, even with
the abundance of computation intensity present in dense linear
algebra operations.

To make the discussion concrete, we use NVIDIA TensorCore as
an example of a matrix accelerator. On NVIDIA Volta and Ampere
architectures, matrix computations can not only be carried out by
CUDA cores (SGEMM), but also by TensorCore units (TC-GEMM).
On Nvidia V100 GPU, CUDA core SGEMM usually performs at 14
TFLOPS, whereas TensorCore TC-GEMM can reach 112 TFLOPS,
representing an 8x speedup by using the matrix accelerator. On the
newer A100 GPU, the ratio is even higher at 16x. But the time cost of
data movement between host and device and memory capacity do
not improve commensurately. Consequently, the algorithms used
by state-of-the-art works such as BLASX [23] is no longer adequate
to hide all the communication costs. For instance, in terms of the
V100 PCle graphic card, the peak rate of data movement is around
13GB/s, which means moving two matrices with a size 16384+ 16384
from host to device will take around 150ms. To put it into context,
the computation using SGEMM will take 630ms while using TC-
GEMM will take 97ms. It is evident that data movement will very
likely become the bottleneck.

In view of the new situation, the TensorCore-based OOC appli-
cation optimization needs to be data movement centric. Without
careful arrangement of data access patterns, the overall perfor-
mance will be dominated by the data movement rather than the
computations. So, there are two main challenges to be tackled to
design high-performance OOC linear algebra algorithms. 1)How to
reduce the data movement between different memory levels; 2)How
to overlap the data movement with computations.

To illustrate how to address these challenges, we select QR fac-
torization as an example, as it has a well-implemented in-core
TensorCore-based algorithm [24]. And in the rest of this paper, we
will try to explain why the conventional blocking algorithms can-
not work efficiently and why the recursive algorithms have better
performance. Besides, we will also discuss the details of how to
implement the OOC QR factorization with data movement perfectly
overlapped. We consider our contributions to be:

e Our algorithmic analysis, performance modeling, and empir-
ical demonstration suggest that conventional blocking linear
algebra algorithm is bottlenecked by either the data move-
ment for fundamental matrix computation such as matrix-
multiplication and QR factorization on modern matrix ac-
celerator architectures, or the inefficient GEMMs due to the
special shapes restricted by the fixed blocksize.

e We design a novel CPU-GPU hybrid computation module,
data movement management, and pipeline based on recur-
sive formulation of matrix-multiplication and QR factor-
ization, which nearly perfectly overlap bidirectional data
movement and highly efficient in-core computation, thereby
the inside OOC TC-GEMMs can be said to be optimal.
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e We demonstrate an end-to-end out-of-core QR factorization
algorithm whose performance is up to 2x faster than conven-
tional blocking QR factorization algorithm by comparison,
and achieve around 45% of TensorCore peak performance.

The rest of the paper is organized as follows: Section II talks about
the related work; section III analyzes the performance behaviors
of the blocking and recursive algorithms; section IV explains the
implementation and optimization details and section V provides
experimental evaluations. And section VI draws a conclusion and
depicts the future work.

2 Related Work

The out-of-core processing has a long history, but there’s an ap-
proximate chronological boundary that before the year 2000, the
out-of-core processing is usually deployed on a single disk-CPU
hybrid system, while after the year 2000, it’s often used on CPU-
GPU hybrid system. In the late 2000s, the development of GPGPU
and distributed systems attracts many researchers to explore how
to use GPU to deal with a massive scale of data and thereby leads
to the usage of out-of-core processing on CPU-GPU hybrid sys-
tem and distributed systems. Since 2017 various devices such as
NVIDIA TensorCore, Google Tensor Processing Unit (TPU), and so
on are quickly emerging in response to the high demand for neu-
ral network training and inference tasks. The speed of the matrix
multiplication becomes so fast, that the biggest problem fit into
the device memory would only take a second to finish. However
without out-of-core capability, such impressive speed cannot be
used to solve a larger problem that does not fit into the very limited
device memory space. Highly efficient out-of-core matrix computa-
tions are highly desirable due to the accessibility and simplicity of
a single machine.

2.1 Disk-CPU Out-of-Core

In 1996, the SOLAR [21] was released and it became the first well-
implemented out-of-core package. It combines LAPACK [2] and
ScaLAPACK [4] based in-core subroutines, out-of-core subroutines
and input-output subroutines. Later in 2002, Toledo and Rabani [22]
proposed an out-of-core filter-diagonalization method to solve the
very large electronic structure calculations. Note that they also
proposed an out-of-core recursive QR factorization, which is not
included in the SOLAR package, in this work.

With the development of distributed systems, researchers are
more interested in solving large problems on distributed machines
or multiple threads architecture rather than on a single machine. As
a result, out-of-core processing is investigated on distributed sys-
tems. D’Azvedo and Dongarra [6] migrated LU, QR, and Cholesky
subroutines in ScaLAPACK to out-of-core relative subroutines. And
in 2012, Gregorio et al. [19] designed some out-of-core subroutines
that don’t lose any performance on multithreaded architectures.

2.2 CPU-GPU Out-of-Core

cuBLASXt ! library offered by Nvidia provides hybrid CPU-GPU
implementations of BLAS3 routines. In 2016, BLASX [23] used
different out-of-core strategy and the performance is slightly better

!https://docs.nvidia.com/cuda/cublas/index. html#using-the-cublasXt-api
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than cuBLASXt. In addition, both cuBLASXt and BLASX aims at
the multiple-GPUs platform.

There’re also some other CPU-GPU OOC applications that solve
specific problems. For example, both[14] and[15] discusses the OOC
SVD implementation on CPU-GPU hybrid system.

2.3 TensorCore Technology

In 2017, TensorCore technology was introduced by Nvidia on its
Tesla architecture[17]. There’re some investigations [16], micro-
architecture analysis and benchmarking [13]. Except half precision
GEMMs, researchers also indicate that TensorCore can also be
used for reduction and scan [5]. In [10-12], TensorCore was used
for accelerating linear system solvers in the framework of hybrid
CPU/GPU linear algebra package MAGMA([7]; and TensorCore
based QR factorization [24] mentioned before.

2.4 Recursive Linear Algebra Algorithms

The recursive linear algebra algorithms have long been known to
the numerical algorithm communities and have been shown to
be advantageous over blocking algorithms, however such perfor-
mance gains are typically rather small, as blocking alone was able
to achieve near peak performance on previous architectures. Exam-
ples include recursive Cholesky and LU proposed in Lawra [1] and
ReLAPACK [18], recursive partial pivoted LU by Toledo [20]. Recur-
sive QR factorization has been studied by [9] as panel factorization
solver and extended to full matrix factorization to TensorCore [24].
Recently, Zhang has proposed some TensorCore recursive BLAS3
algorithms [25] that can be used in matrix factorization. A recursive
version of the Linpack benchmark (LU factorization) is studied on
iPad 2 in [8].

3 Performance analysis

In this section, we’ll analyze the performance of the recursive algo-
rithm and compare it with the blocking algorithm. We’ll discuss the
amount of data movement and the overlapping behaviors of OOC
TCGEMMs. We'll also give a brief introduction to QR factorization
to make the analysis more understandable.

3.1 QR factorization

The QR factorization, also known as QR decomposition, aims to
factorize a matrix A into a product of an orthogonal matrix Q and
an upper triangular matrix R. It’s widely used in the scientific
and engineering area to solve orthogonalization, linear least square
problems, eigenvalue decomposition, and singular value decomposi-
tion problems. In general, there are three common-used algorithms,
including Gram-Schmidt, Householder, and Givens rotation. In this
paper, we use the classic Gram-Schmidt to illustrate our methodol-
ogy, thus we’ll only give the background knowledge of the classic
Gram-Schmidt QR factorization algorithm.

3.1.1  Gram-Schmidt process The Gram-Schmidt process aims to
find a set of orthonormal vectors in an inner product space. Given
an array of linearly independent vectors [a;|az|as|...|a,], the Gram-
Schmidt will find the orthonormal basis one by one. Then the set
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of orthonormal vectors [q1]|q2|g3]...|gn] is given by Equation (1).
up = a, q1 = u1/|lus|
q2 = uz/|luz|

q3 = us/||us]|

Uy = ap — Projul(az),

us = a3 — Proj, (as) — Proj,, (a3),

n-1
Un = an — ) Proj, (an),
j=t

qn = un/|lunl|

Ta = u(u” a) is the orthogonal projection

of the vector a onto an unit vector u. We also obtain R during the

in which Proj, (a) = uu

Gram-Schmidt process: r;j = qiTai. Depending on the evaluation
order of the procedure described in (1), there are two mathemat-
ically equivalent but numerically different variants called classic
Gram-Schmidt (CGS) and modified Gram-Schmidt (MGS). CGS ex-
ecutes row by row in (1), whereas MGS subtracts Proj,, (a;) from
aj for all j > i as soon as u; is computed. MGS can be visualized
as evaluating (1) with row and column interleaved. This subtle
difference has important implications in numerical stability and
parallelism exposed. MGS is more stable but less parallel.

As described above, the Gram-Schmidt process is inefficient on
hierarchical memory systems due to the low data locality of the
vector-matrix operations. To improve locality, blocking must be
applied such that the orthogonal projection of multiple vectors onto
multiple orthonormal vectors is performed in one shot. CGS can be
trivially blocked since it can be directly “upgraded” into blocking
algorithm by considering the vectors a;, u; not as vectors but as a
block matrix (a group of column vectors). MGS, on the other hand,
is not obvious to block.

3.1.2  Blocking Strategy The blocking QR factorization’s workflow
is shown in Fig 1. At first, we select a blocksize b and factorize the
first b columns (termed as panel). Then we have the factorized Q
and let it time the rest of the matrix Az to get Ri2. The next step is
updating the rest of the matrix Aj. After that, we start a new panel
factorization and repeat the steps until the last panel is factorized.
See Fig 1 for the intuitive steps.

3.1.3  Recursive Strategy Compared to the blocking strategy, the
recursive strategy is not that popular. The reasons might be that
blocking algorithms give enough data locality and parallelism on
previous architectures; but now on the new matrix accelerators,
it no longer can. The recursive algorithm is assembled like this
equation (2) and the workflow is: at first, we divide evenly its
columns into two halves, denoted by A = [A1]A3]. At first, we
factorize the first half A; = Q1R11, and then compute north-east
quarter of Ry2 = QITAZ. Next we update the second half A; =
Az — Q1Ry2. Finally, QR factorize the updated second half Ay =
Q2R22. Note that the QR of the two halves can be recursed using
this algorithm itself. Fig 2 shows the general steps of factorizing a
matrix with 2-level recursion.

[A1]A2] = [Q1]Q2]

[ Ri1 | Riz ] @

Ra

Zhang [24] has explained and shown the recursive QR performs
better than the conventional QR on TensorCore. The reason behind
the speedup is that recursive algorithms can provide larger GEMMs
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Compute R12

Update A2
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Compute next R12

Update next A2

Figure 1: Blocking QR factorization steps

Update 2nd
half

Then Factorize
2nd half of 1st
half

Factorize Update 2nd
Isthalf of  half of 1st
1st half half

Compute
R12

Figure 2: Blocking QR factorization steps

which can be executed more quickly on TensorCore, while the
conventional algorithms cannot provide such GEMMs. Different
from the in-core algorithms, the OOC algorithms focus more on the
data movement and elaborate pipelining issues. So, the following
subsections will discuss the effects on the data movement of such
algorithms, by using OOC QR factorization as an example.

3.2 The Amount of Data Movement

In the out-of-core scenario, the panel factorization will be per-
formed on GPU step by step, while the GEMMs will be out-of-core
and follow some specific computing pattern. But in this section, to
simplify the computations, we’ll only discuss the data movement
of the naive implementation, that the elements will not be reused
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and it can give us an overview of the data movement overhead in
the worst case.

3.2.1 Blocking Strategy Given a matrix with size m X n, where
m is the number of rows and n is the number of columns. The
panel size (blocksize) is b and the matrix will need k iterations to
be fully factorized. Then we have n = kb. In the i-th iteration, the
overall host to device data movement is mb + mb + m(n—ib) + mb +
b(n—ib) + m(n — ib), and the overall device to host data movement
is mb + b2 + b(n — ib) + m(n — ib). As a result, during the entire
factorization, the amount of data movement from host to device is:
k nb

D [3mb + (2m + b)(n = ib))] = (k + 2)mn + n?z T2

i=1
And the amount of data movement from device back to host is:
k 1

Z[mb +b2+(m+b)(n-ib)] = Sk + Dymn + n? + nb|

i=1
3.2.2  Recursive Strategy The amount of data movement in the
recursive algorithm is a bit more complicated. First of all, the recur-
sion depth is log;éc . Different from the blocking algorithm, only the
deepest recursion does the factorization, while other levels of recur-
sion perform GEMMs. So, the overall data movement of the deepest
recursion is mn. For the recursions of GEMMs, the amount of data

movement is Zl;)géc ! [2mn + 2171b%]. Hence, the total amount of
data movement from host to device is:
2(logy k + Dmn+ ™0 12
2 2
Similarly, the amount of data movement from device to host is:
2
(%logéC + 1)mn + n?

According to the quantitative analysis, it can be observed that
both the amount of data movement of blocking and recursive OOC
QR is highly related to the number of blocks k. Obviously, the data
movement of the recursive QR is related to log k, while the blocking
QR is linearly related to k. This means the gap will become even
larger as the k increases. Note that this is only a rough estimation
of the data movement because it’s based on the assumption that all
of the data won’t be reused. In practice, some of the matrices can
definitely be reused in the computations. But the results can still be
a good reference to show the advantages of recursive algorithms,
and we will also give the real quantitative data movement results
in the evaluation section.

3.3 Overlap Ratio in GEMMs

In the above subsection, we’ve discussed the data movement be-
haviors and it has been shown that the recursive algorithm has
less data movement. In this subsection, we’ll try to explain that the
recursive algorithm has advantages over the blocking algorithm
with regard to GEMMs overlap ratio (here the overlap ratio means
how much the data movement can be overlapped by computation).
Typically, there are two types GEMMs, one is an inner product
(to simplify the name, we’ll call the GEMM types in Fig 3, 4 inner
product) to generate Ry = QlT Ajy and another is an outer product
(Fig 5, 6) to update Az = Az — Q1R12. The overlap patterns of these
two types are different, thus we’ll discuss them separately.
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Figure 3: Out-of-core inner product tiling strategy in recur-
sive QR factorization
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Figure 4: Out-of-core inner product tiling strategy in block-
ing QR factorization

3.3.1 Inner Product Suppose we have two matrices A and B with
size m X k and k X n. In the recursive QR factorization, m equals
to n. As the matrix is typically too large to store on the device, we
may want to divide the matrices into several tiles. For each tile, we
will move in and move out GPU memory to perform computations.
To obtain the best performance, the time cost of data movement
should be overlapped by the time cost of in-core TCGEMMs.

To minimize the data movement in recursive QR factorization,
we follow Fig 3 to divide the two matrices. In this case, the matrix
A and B will be accessed only once. Then the data movement from
device to host will cost W and the TCGEMM will cost Z’E;lk ,
where Ry, and Ry denote the CPU-GPU data transferring rate and
TCGEMM computation rate respectively. To hide the data move-
ment cost by overlapping, % must less than nggk which

means m should larger than 282 R . On V100 GPU, the Ry is around
90TFLOPs and Ry, is around 12GB/s if using pinned memory. Then
the final m should be larger than 30,000. And this is usually the
case for problems that require out-of-core computation.

When it comes to the blocking algorithm, we can let the matrix A

to be stored on GPU and divide B into blocks with blocksize b, see 4.

Therefore, the inequality becomes 4kb < Z%kb

the final m = 15, 000.

It seems that the m in blocking algorithm is easier to achieve, but
one thing should be mentioned that the m in blocking algorithm is
typically relatively small and fixed to allow the panel to be stored
on the device, especially when the GPU memory is limited and the
number of columns of the original matrix is large. For example, if
the GPU memory is 16GB and we want to factorize a matrix with
size 131072% 131072, then the m is typically less than 10,000 to avoid

2R,
:>m>R—gand
m
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Figure 5: Out-of-core outer product tiling strategy in recur-
sive QR factorization
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Figure 6: Out-of-core outer product tiling strategy in block-
ing QR factorization

Cb?

running out of GPU memory. In contrast, the m in the recursive
algorithm is more flexible and not related to the blocksize. Still,
with a GPU has 16GB memory, factorize a 131072 X 131072 matrix
will lead to four inner products if the blocksize is 8192, including
8192x131072%x 8192, 16384 X 13107216384, 32768 X 131072 X 32768
and 65536X131072X65536. At least the data movement in the largest
two GEMMs can be perfectly overlapped (computing bound), while
all of the GEMMs in blocking QR are memory bound. Regarding the
smaller GEMMs in the recursive QR, we’ll discuss how to optimize
them in the next section.

3.3.2  Outer Product Similarly,suppose the GEMM size is m X n X k
(matrices sizes are m X k and k X n). For the outer product, we’ll
use a different strategy to minimize the data movement.

For the recursive algorithm, we can let the matrix B to be stored
on GPU, and we move the blocks with size b X k of matrix A and C
in and out (Fig 5). Then the data movement will cost M and

the TCGEMM will cost ZbI; I thus we have n > ;R = 3e4, which
is the same as previous result.

For the blocking algorithm, as the matrix A and B is tall and
skinny, we can let both A and B to be stored on GPU to avoid
unnecessary data movement. In this case, we can only care about
the data movement of C, and the strategy is shown in Fig 6. The
time cost of moving C from CPU to GPU will take 4b1b2

Zb‘kbz on TCGEMM. Hence, the k should be larger than

1.5e4 to overlap the data movement.

Although the strategy is different in the two GEMM types, the
results are the same. Based on our analysis, we cannot expect the
data movement of the blocking algorithm to be overlapped if we
desire minimum data movement. Note that we didn’t compute the
time cost of moving data from GPU to CPU, as this kind of data

and we’ll

spend
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movement can always be overlapped by moving data from CPU to
GPU.

3.4 Summary

We’ve mentioned in the first section that in designing a high-
performance OOC algorithm, the data movement should be reduced
and the overlap ratio should be higher. From our above analysis,
we could find that the recursive algorithm has advantages over
the blocking algorithm because it can reduce data movement and
increase data overlap ratio. Specifically, the performance of GEMMs
in the recursive algorithm is less relevant to the blocksize, while
the performance of GEMMs in the blocking algorithm is restricted
by the blocksize. This means the recursive algorithm is more likely
to perform even better on GPUs with smaller memory or larger
scale matrices. In addition, we can also have more flexibility to
optimize the large GEMMs in the recursive algorithm, because we
don’t really care about the blocksize. For the small GEMMs, we’ll
introduce the optimization strategy in the next section.

4 Implementation and Optimization

We’ve already shown the recursive QR factorization has better data
movement behaviors and overlapping ratio, the implementation
and optimization are very important as well. So, in this section, we’ll
illustrate our implementation and optimization strategy. Note that
we divide the optimization into two parts, the first part is the opti-
mization inside GEMMs, which is called GEMM-level optimization;
the second part is optimizing the data transferring between panel
factorization and GEMMs, and it’s termed as QR-level optimization.

4.1 GEMM-Level Implementation and
Optimization

Similar to the performance analysis, the two types of GEMMs have
two different implementations.

4.1.1 Inner Product Typically, to implement a high concurrent
CPU-GPU program, we should be clear about how to use the
streams. Cuda streams? are introduced by Nvidia to solve the con-
currency problems of executing programs on the device. Generally
speaking, with streams and proper devices (most modern Nvidia
GPUs support CUDA streams), moving data from device to host,
from host to device, and in-core computations can be executed at
the same time. In our problem scenario, moving data from host to
device, in-core computations, and moving data from device to host
can work concurrently, because computations can be overlapped
by communications, and the host-device communication links are
bidirectional. Therefore, we need at least three streams to make
these three assignments run in parallel. But because it’s inner prod-
uct, it’s unnecessary to transfer the matrix C from device to host
before the entire computations is ended. Thus, we can only let the
move-in operations and the computations be asynchronous, and
move the data out in the end. In this case, we create several streams
and each stream takes charge of one block. The final pipeline is
shown in Fig 8.

4.1.2  Outer Product In terms of this type of GEMM, as we dis-
cussed before, the B is already stored on GPU (the B is the result

Zhttps://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams- simplify-
concurrency/
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of the inner product, there’s no need to copy it from CPU to GPU
again). So, we only need to read tiles in A and C and write to the
tiles in C. But because of the limited GPU memory, we use the same
GPU memory space to store the matrix C, which means the move-in
operation should be performed after finishing the entire move-out
operation to avoid conflict. This waiting impedes the performance
because the move-out operation cannot be overlapped. To solve
this problem, we use extra memory space to temporally store the C
and once the move-out operation is done, we perform a fast in-core
data transferring, and at the same time, we start another move-in
operation, see Fig 10.

4.1.3 Blocksize Matters The blocksize of GEMMs cannot be se-
lected casually. Smaller blocksize leads to slower in-core compu-
tation, and larger blocksize will increase the overhead of the first
move-in operation and the last move-out operation. So we can
follow this strategy: start with a relatively small blocksize and grad-
ually increase it to the max blocksize. Consider this situation, when
we’re computing the largest inner product in recursive QR with
GEMM size 65536 * 131072 = 65536, and we set the blocksize to
be 8192. Then the first step is to compute a GEMM with a size of
65536 * 8192 * 65536. Obviously, if we start with blocksize 8192,
then the first move-in operation cannot be overlapped by compu-
tations. But if we start with blocksize 2048 and gradually increase
the blocksize to 8192, then the same part of the move-in operation
of the first block (65536 * 8192) can be overlapped. Actually, based
on our experimental results, this trick increases the inner product
performance from around 85TFLOPs to 87TFLOPs.

4.2 QR-Level Implementation and
Optimization

So far, the optimization of OOC GEMMs is done, but there are still
some problems left. For example, how to deal with small GEMMs?
The m or n in small GEMMs is not large enough so that the data
movement cannot be overlapped perfectly. Indeed, we cannot opti-
mize the small GEMMs anymore because of the insufficient data
intensity, but we can tackle this problem in the QR-level optimiza-
tion that can helps us avoid unnecessary data movement. The op-
timization doesn’t happen inside GEMMs but works between QR
panel factorization and the GEMMs. Besides, using the results from
the inner product in the outer product to reduce unnecessary data
movement can also be regarded as QR-level optimization to some
extent.

So, after answering what’s QR-level optimization and implemen-
tation, the question becomes how to implement and optimize it.
Actually, the implementation is quite easy, following the design
pattern of the in-core recursive QR [24] is the solution. But the dif-
ficulty is how to optimize it, including cutting off the unnecessary
data movement and enabling cross BLAS operation overlapping.

The first optimizing strategy is cutting off some move-in opera-
tions of the panel. Because when the GEMM size is small, the entire
results can be stored on GPU and they can be used directly in the
next panel factorization. Similarly, when the GEMM size is small, it
doesn’t really need to read the matrix A from CPU, it can directly
use the panel factorization results and only read B from CPU.

The second optimizing strategy is trying to hide the move-out
operations between panel factorization and GEMMs. For example,
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when the panel factorization is finished and the factorized matrix
is ready to be transferred to host, we can perform a move-in opera-
tion for inner product at the same time. This kind of overlapping
can also happen between inner product and outer product. When
we’re moving Rjz out, we can move in the first blocks of A and C.
Also, after the outer product, the last move-out operation can be
overlapped by moving in the first few columns of the panel. See
Fig 13 for the intuitive optimization results.

5 Experimental evaluation

In this section, we’re going to show our experimental results of the
OOC QR factorization. We will evaluate the performance of the
GEMMs and the entire QR factorization, by providing the overall
execution time and the timelines.

For all experiments we use a3.10.0-1160.11.1.el7.x86_64 Linux op-
erating system with 128GB memory. The GPU is NVIDIA V100 GPU
(32GB) PCle version. The CUDA version is 10.1, which contains a
C++ compiler and cublas library. The in-core QR factorization is
based on the LATER project.’

5.1 The Performance Behaviours of GEMMs

As we discussed before, the shapes and sizes of GEMMs in the recur-
sive QR and blocking QR are different, therefore, in this subsection,
we’ll study the performance behaviors of the largest GEMMs (be-
cause they cost a large portion of the entire QR factorization time)
in recursion and blocking. Table 1 and Table 2 show the quantitative
results of the GEMMs, including the time cost of data movement,
GEMMs, overall time cost, and relative flops. Meanwhile, Fig 7, 8, 9
and 10 give the timelines of the different OOC GEMM:s.

5.1.1 Inner product performance In terms of inner product, in the
previous analysis, we assume that all in-core computations run
at 90TFLOPs. But the results suggest that the largest GEMM in
blocking QR doesn’t obey the rule, as the in-core GEMM only
runs at 52.6TFLOPs, while the in-core recursive GEMM runs at
99.9TFLOPs. This is probably because of the special shape of the
blocking in-core GEMM. Actually, in the TensorCore-based QR
paper [24], the authors also mention that tall and skinny GEMMs
are very hard to run at peak speed on TensorCore. Fortunately,
the in-core recursive GEMMs don’t have this weak point when
the GEMMs are large enough. No doubt that the small GEMMs
will also have some problem, but after all, they’re only a small
part of the entire computations, while the blocking GEMMs need
to face this problem in the complete period because it consists
of fixed small-sized and shaped GEMMs which are inefficient on
TensorCore.

Both timelines of the inner product (Fig 7,8) show a good overlap
rate. In other words, the time cost of close to peak GEMMs dominate
the entire computations.

5.1.2  Outer product performance When it comes to the outer prod-
uct performance, things become slightly different. When the QR
blocksize is 16384, there’s no big difference between the two types
of GEMMs. Both the in-core GEMM and the overlap rate are de-
sirable. But because the experiments are performed on V100 GPU
which has 32GB device memory, the QR blocksize can be as large as

3https://github.com/Orgline/LATER
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Single Block Time Cost | Recursive Blocking
Host to device 693ms 728ms
GEMM 1408ms 1337ms
Device to Host 1306ms 81ms
In-core flops 99.9TFLOPs | 52.6TFLOPs
Overall Time cost Recursive Blocking
Synchronous 18183ms 14920ms
Synchronous flops 62.0TFLOPs | 33.0TFLOPs
Asynchronous 12932ms 11286ms
Asynchronous flops 87.1TFLOPs | 43.6TFLOPs

Table 1: Inner product behaviors, recursive matrix size is
65536°131072"65536 with blocksize 16384, blocking matrix
size is 16384"131072"114688 with blocksize 16384

—Host to Device
TCGEMM

Asynchronous GEMM —Device to Host

Synchronous GEMM

0 2000 4000 6000 8000 10000 12000 14000 16000
Computation time(ms)

Figure 7: The timeline of computing max inner product
GEMM in 0.13M*0.13M in blocking QR factorization, the ma-
trix size is 16384%131072*114688, the blocksize is 16384.

—Host to Device
TCGEMM

Asynch GEMM i
synchronous —Device to Host

Synchronous GEMM

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Computation time(ms)

Figure 8: The timeline of computing max inner product
GEMM in 0.13M70.13M in recursive QR factorization, the
matrix size is 65536*131072%65536, the blocksize is 16384.

16384 so that the data movement is able to be overlapped perfectly
based on our analysis.

However, most of the widely-used GPUs, such as RTX 20,30
series, don’t have such a big device memory. On these GPUs, the QR
blocksize need to be reduced as a compromise. For example, Fig 11
shows the timeline of the blocking GEMM:s with QR blocksize 8192,
and we can see that the GEMMs cannot be overlapped anymore.
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—Host to Device
TCGEMM

Asynchronous GEMM —Device to Host

Synchronous GEMM
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Figure 9: The timeline of computing max outer product
GEMM in 0.13M”0.13M in blocking QR factorization, the ma-
trix size is 131072"16384114688, the blocksize by, by is 16384
and 16384.

Quantitatively, the time cost of host to device, GEMM, and device
to host is 347ms, 170ms, 326ms. The computation time is dominated
by the data movement, thus even if the total number of the flop of
blocking GEMMs with QR blocksize 8192 is around 2x less than
the GEMMs with QR blocksize 16384, the computations still spend
more time.

Single Block Time Cost | Recursive Blocking
Host to device 347ms 86ms
GEMM 654ms 89ms
Device to Host 163ms 81ms
In-core flops 107.6TFLOPs | 98.8TFLOPs
Overall Time cost Recursive Blocking
Synchronous 14129ms 5119ms
Synchronous flops 60.3TFLOPs | 34.7TFLOPs
Asynchronous 11517ms 11286ms
Asynchronous flops 97.7TFLOPs | 96.2TFLOPs

Table 2: Outer product behaviours, recursive matrix size is
131072%65536765536 with blocksize 8192, blocking matrix
size is 131072"16384114688 with blocksize 16384 and 16384

In fact, the implementations of the GEMMs can be said to be
optimal. For example, in terms of the outer product, our OOC
GEMM will cost 11,517ms in total and the in-core computation
costs 65416=10,464ms. Add the first move-in and the last move-out
time consumption (because they cannot be overlapped at all), we
get the ideal time cost is 10,974ms. This is a fixed upper bound of
the given GEMM with blocksize 8192. But there’s no doubt that in
real computations, some time will be wasted due to the delays and
synchronizations, so the gap (543ms) is reasonable. In other words,
the GEMMs are optimal.

5.2 The Performance Behaviour of QR

The performance of the two types of QR factorization is highly
affected by the GEMMs because the in-core panel factorization is
exactly the same. This means the recursive algorithm has big advan-
tages over blocking algorithms because it has faster GEMMs. With
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Computation time(ms)

Figure 10: The timeline of computing max outer product
GEMM in 0.13M*0.13M in recursive QR factorization, the
matrix size is 131072%65536°65536, the blocksize is 8192

—Host to Device'
TCGEMM

Asynchronous GEMM —Device to Host

Synchronous GEMM

0 2000 4000 6000 8000 10000 12000 14000
Computation time(ms)

Figure 11: The timeline of computing outer product
GEMM with QR blocksize 8192, the matrix size is
131072*16384*131072, the inside GEMM blocksize b1, b,
is 32768 and 32768.

regard to the QR-level optimization and overlapping, according to
our analysis, the acceleration from reducing data movement and
overlapping is very similar.

Fig 12 and Fig 13 demonstrate the timeline of the entire QR fac-
torization. It’s obvious that with QR blocksize 16384, the recursive
QR takes advantage of the higher rate of inner product thereby
beats the blocking QR factorization. We can also find the QR-level
optimization helps the two factorization gain around 15% speedup.

However, when the blocksize is 8192, the performance of block-
ing OR goes down significantly due to the increasing time cost of
GEMMs, as the data movement cannot be overlapped by the in-core
GEMMs anymore (the time cost is 347ms, 170ms, 326ms for move-
in, GEMM, move-out respectively). In contrast, the performance of
recursive QR doesn’t change much. It’s not surprising to see this
result, because the panel factorization is recursive, therefore, the
only difference is the amount of data movement (can be overlapped
mostly). We simulate the factorization by limiting the memory us-
age to be less than 16GB on V100 GPU and the results are shown in
Fig 14, 15. The speedup of recursive QR factorization is nearly 2x
compared to the blocking QR factorization. The results also suggest
that the higher ratio computation speed/memory capacity is, the
more advantageous recursive vs. blocking is.
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Data movement time | Recursive | Blocking
Host to device 37.9s 47.2s
Device to Host 19.3s 22.3s

Table 3: The time cost of data movement of two different

types of QR factorization with QR blocksize 16384

—Panel Host to Device
Panel Computation
—Panel Device to Host
—Inner Product
—Outer Product

Blocking QR with optimization

81704ms

. — —
. . . . . . CR
Naive blocking QR
92097ms
. ——
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Computation time(ms)

Figure 12: The timeline of computing blocking out-of-core
OR, the blocksize is 16384.

—Panel Host to Device
Panel Computation
—Panel Device to Host

—Inner Product

—Outer Product
Recursive QR with optimization 61838ms
Naive Recursive QR 73720ms
0 10000 20000 30000 40000 50000 60000 70000 80000

Computation time(ms)

Figure 13: The timeline of computing recursive out-of-core
QR, the blocksize is 16384.

Another obvious difference between the two factorization is the
amount of the overall data movement. See Table 3. The results can
verify our claim that the recursive algorithm has less data move-
ment than the blocking algorithm. Actually, the data movement
is not very important here, because most data movement can be
overlapped. But it’s still valuable to see such difference because in
some specific situations where moving data can not be hidden, the
recursive algorithm still can help.

To make our experiments more complete, we also experiment
with different matrix shapes and sizes. However, limited by our
main memory capacity, we only tested the matrices with sizes
65536765536 and 262144*65536. Table 4 demonstrates the time cost
of the GEMMs and panel when we’re using the blocking and the
recursive strategy with blocksize 8192, respectively. In terms of the
overall performance (Panel+GEMMs+data movement), we get 1.5x
and 1.7x speedup respectively. As we can see in the Table 4, the
time cost of the panel is the same among the two strategies, because

ICPP °21, August 9-12, 2021, Lemont, IL, USA

—Panel Host to Device
Panel Computation
—Panel Device to Host
—Inner Product
—Outer Product

Blocking QR with optimization 156553ms

' ' ' ' ' ' ' ' ' [ I

Naive blocking QR
168789ms
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Computation time(ms)

Figure 14: The timeline of computing blocking out-of-core
QR, the blocksize is 8192.

==Panel Host to Device
Panel Computation
==Panel Device to Host
==|nner Product
==Quter Product

Recursive QR with optimization

72546ms
.-

Naive Recursive QR
80519ms

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Computation time(ms)

Figure 15: The timeline of computing recursive out-of-core
OR, the blocksize is 8192.

we’re using the same in-core panel factorization. The time cost of
the GEMMs show significant differences, for the reason that the
recursive strategy can provide larger data overlap ratio and better
matrices’ shapes to be performed on TensorCore. However, we can
observe that the speedup is not as high as the size 131072*131072
(2.0x) because of two reasons: 1) the size 131072131072 has larger
proportion of GEMMs, which means it has more opportunities to
enjoy the faster OOC GEMMs; 2) the matrix shapes are easier to be
accelerated on TensorCore (the GEMMs in the size 262144*65536
are taller and thinner). Based on the these experiments, we can
conclude that the recursive QR factorization usually show a great
advantage over the blocking algorithm on different sizes, and the
larger and the more square matrices the matrices are the better.

5.3 Summary

In this section, we've shown the experimental results that can
support our previous claim: 1) The data movement in recursive QR
is less than the data movement in blocking QR; 2) The blocksize
of QR factorization needs to be larger than 15k to overlap data
movement perfectly; 3)the recursive QR has great advantages over
blocking QR in terms of speed.

Generally speaking, the recursive OOC QR is around 1.25x faster
than the conventional blocking QR on GPUs with larger device
memory, and around 2x faster than blocking QR when the memory
is small.
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Partition Recursive Blocking
Matrix Size | 65536"65536
GEMMs 10.5s 18.9s
Panel 2.7s 2.7s
Matrix Size | 262144*65536
GEMMs 38.5s 77.0s
Panel 9.0s 9.0s

Table 4: The total time cost of GEMMs and panel of
two different sizes of QR factorization (65536"65536 and
262144765536) with blocksize 8192.

6 Conclusion and Future work

In this paper, we’ve discussed the recursive out-of-core QR factor-
ization that shows better performance over blocking out-of-core QR
factorization. We’ve implemented the recursive QR factorization
and the experiments imply that such acceleration is generally from
the inside GEMMs. We’ve also analyzed the reasons behind such
speedup. In short, the GEMMs in conventional blocking QR fac-
torization cannot run at peak performance on TensorCore, neither
overlap the data movement by in-core computations due to the
fixed blocksize, while the GEMMs in recursive QR factorization is
insensitive to the blocksize, in fact, it provides dynamically adjusted
blocksizes. Hence, they’re more flexible and easier to be optimized
thereby can perform faster.

It’s interesting to think about if this kind of strategy can be
applied to other applications such as LU and Cholesky factoriza-
tion. As there’s no in-core TensorCore based partial pivoted LU
and Cholesky factorization, we can only analyze it theoretically.
The pattern of out-of-core LU and Cholesky factorization is very
similar to the out-of-core QR factorization, which is interleaving
panel factorization and trailing matrix update. For example, the
trailing matrix update in LU factorization is also of outer product
form, and the recursive algorithm can definitely help this kind of
GEMMs. Anyway, the other out-of-core linear algebra algorithms
are included in our future work.

Another attempt will be considered in the future is trying to
deploy the recursive algorithms on A100 GPU, whose peak per-
formance of TensorCore is over 300TFLOPS. In this situation, the
blocksize must be larger than 60k if we want the inside GEMMs to
be computation-dominated. So, it becomes impossible for blocking
algorithms to have such a big blocksize due to the limited memory
space. But for recursive algorithms, the dominant large GEMMs can
run at full speed, which indicates the recursive algorithm might be
even more advantageous than on V100. More accessible architec-
tures such as RTX20,30 series with slightly reduced computation
speed and much reduced memory capacity will see a bigger advan-
tage of recursion as well for the same reason. Going forward, the
gap between computation speed and data movement speed/memory
capacity is likely going to continue to increase, in which cases con-
ventional blocking will be increasingly data movement constrained
and has ever lower efficiency.
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