Check for
Updates

Fast Symmetric Eigenvalue Decomposition via WY
Representation on Tensor Core

Shaoshuai Zhang, Ruchi Shah
{szhang36,rkshah5}@uh.edu
Department of Computer Science
University of Houston
Texas USA

Hiroyuki Ootomo, Rio Yokota
{ootomo.h@rio.,rioyokota@}gsic.titech.ac.jp
Global Scientific Information and
Computing Center
Tokyo Institute of Technology

Panruo Wu
pwu7@uh.edu
Department of Computer Science
University of Houston
Texas USA

Tokyo Japan

Abstract

Symmetric eigenvalue decomposition (EVD) is a fundamen-
tal analytic and numerical tool used in many scientific areas.
The state-of-the-art algorithm in terms of performance is
typically the two-stage tridiagonalization method. The first
stage in the two-stage tridiagonalization is called successive
band reduction (SBR), which reduces a symmetric matrix to
a band form, and its computational cost usually dominates.
When Tensor Core (specialized matrix computational accel-
erator) is used to accelerate the expensive EVD, the conven-
tional ZY-representation-based method results in suboptimal
performance due to unfavorable shapes of the matrix com-
putations. In this paper, we propose a new method that uses
WY representation instead of ZY representation (see Sec-
tion 3.2 for details), which can provide a better combination
of locality and parallelism so as to perform better on Tensor
Cores. Experimentally, the proposed method can bring up to
3.7x speedup in SBR and 2.3x in the entire EVD compared to
state-of-the-art implementations.

CCS Concepts + Mathematics of computing — Mathe-
matical software performance; » Theory of computa-
tion — Parallel algorithms; - Computing methodolo-
gies — Parallel algorithms.

Keywords Eigenvalue Decomposition, GPGPU, Numerical
Linear Algebra, Tensor Core, HPC, Mixed-precision Compu-
tation, Matrix Computation, Singular Value Decomposition,
Low Rank Approximation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0015-6/23/02...$15.00
https://doi.org/10.1145/3572848.3577516

301

1 Introduction

With the advances in processor architecture, Tensor Core, a
specialized unit of Nvidia Volta, Turing, and Ampere archi-
tecture, is designed to perform highly efficient half-precision
(16-bit floating-point format) matrix multiplications accu-
mulated in single precision. Recently, Tensor Core has been
widely used to train large-scale deep neural networks by ac-
celerating GEMMs (general matrix-matrix multiplications).
Researchers also try to find the possibilities of deploying
linear algebra algorithms on Tensor Cores. These algorithms
include LU factorization [20], OR factorization [41] and some
BLAS3 operations [42].

Eigenvalue decomposition is another important matrix
computation in numerical linear algebra, as it is useful in
incredibly diverse applications, ranging from quantum chem-
istry [33], quantum mechanics [15], and quantum physics [32],
to data drive analysis and numerous machine learning and
signal processing tasks. Some of these applications may re-
quire high-precision arithmetic, such as double precision, but
increasingly single precision or even lower precision suffices
in many emerging data-driven approaches. For example, prin-
ciple component analysis [1], low-rank approximation [29],
second-order optimization in deep learning [17] and the re-
lated applications [35, 43]. And Tensor Cores can typically
be utilized to accelerate these algorithms and applications.

The symmetric eigenvalue problem can be defined by:

A=XXAxX!

Where A is a symmetric matrix, X is an orthogonal matrix
containing eigenvectors, and A is a diagonal matrix that
has eigenvalues on its diagonal. The most critical step in
computing the eigenvalues of a symmetric dense matrix is
tridiagonalization. The tridiagonalization step can be reliably
computed by the celebrated Householder tridiagonalization
[13]. Alternatively, the blocked variant from LAPACK in-
volves a panel factorization and two-sided matrix trailing
update [2], which improves locality substantially. The par-
allel implementation can be found in [18] and [24]. A more
elaborate approach by Bischof and Sun [7] proposed the
two-stage successive band reduction further to improve the
performance of the hierarchical memory system. 1)The first

https://doi.org/10.1145/3572848.3577516
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577516&domain=pdf&date_stamp=2023-02-21

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

stage involves orthogonal similarity transformations to de-
compose the symmetric dense matrix to a band form:

A=XXxBxX!

where B is a symmetric band matrix; 2)In the second stage,
the bulge chasing transformation is performed to reduce
the band form to a tridiagonal form. Some related investiga-
tion suggested that using the two-phase approach reduces
the communication and computation bottleneck, yielding a
better throughput [24].

However, there is no existing work regarding Tensor-Core-
based eigenvalue decomposition or successive band reduc-
tion. There are two challenges. Firstly, the lower precision
arithmetic in Tensor Core requires the careful design of al-
gorithms. For example, the mixed-precision matrix factoriza-
tion algorithms often follow an approximate-iterate scheme
that first gets the approximate solution (preconditioner) from
a low-precision factorization and then iteratively refines the
solution to higher accuracy. This approximate-iterate ap-
proach is more difficult in EVD. According to the previous
literature, only the SICE algorithm [38] can partially meet
the requirement, as this algorithm can only work with a
portion of the eigenvalues and eigenvectors requested. Sec-
ondly, the matrix shapes of conventional algorithms cannot
be accelerated sufficiently by Tensor Cores whether the con-
ventional tridiagonalization or the 2-stage tridiagonalization
cannot avoid a large amount of tall and skinny GEMMs,
which performs slowly on Tensor Cores. Particularly, using
ZY representation in SBR can utilize the symmetric property
in trailing matrix update (using syr2k routine), but Tensor
Core does not support this kind of GEMM natively.

As a result, to improve the performance, we focus on SBR
and demonstrate that using modified WY representation in-
stead of conventional ZY representation can notably improve
the performance by ’squeezing’ the GEMMs in this paper.
Furthermore, for the accuracy issue, if single precision is
needed, we also introduce a new technique named error-
correlation Tensor-Core-based GEMMs (EC-TCGEMM) [31]
to bring the accuracy back to single precision from the be-
ginning. Thus, we consider our contributions to be:

e We devise, implement and evaluate a fast and stable tall
and skinny QR panel, which brings around 5x speedup
compared to MAGMA and cuSOLVER panel factoriza-
tion.

We analyze and study the performance of using WY
representation [5] and traditional ZY representation [12]
in SBR, which addresses that the algorithm that gener-
ally would not be considered (WY-based) can perform
better than the conventional algorithm (ZY-based) on
new architecture (Tensor Core).

We provide several implementations of SBR that can
work in different situations. Compared to the state-of-
the-art MAGMA relative routine, the speedup is 3.7x

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, and Panruo Wu

302

(half precision) and 1.8x (single precision) if eigenvec-
tors are not needed.

e We check the feasibility of combining MAGMA’s bulge-
chasing process and divide and conquer and our SBR
implementation, and the overall EVD performance
improvement is up to 2.3x.

The rest of the paper is organized as follows: Section II
addresses the related work, including band reduction, tridi-
agonalization, and Tensor Core techniques; section III gives
some background knowledge regarding tridiagonalization,
Householder transformation, and symmetric band reduction;
section IV analyzes the reasons behind the higher perfor-
mance of WY-based algorithm and shows some experimental
results regarding the inside GEMMs; section V introduces
the details of our implementation and optimization, and it
also shows some related experimental results; section VI
compares the performance and accuracy results with the
state-of-the-art software and tools, and section VII draws
the conclusion and depicts our future work.

2 Related Work

The investigation of the symmetric eigenvalue decomposi-
tion problem has a long history. Furthermore, the algorithms
and methods in this area have been extensively studied.

2.1 Tridiagonalization and Tridiagonal Solver

The most widely used and well-known algorithm is the QR
algorithm [39], which repeatedly calls the QR factorization
and GEMM and finally converges to a diagonal matrix that
contains eigenvalues on its diagonal. However, before the
QR and GEMM iterations, a tridiagonalization step is usually
processed as a 'preconditioner’ to reduce the number of QR
iterations. Typically, the tridiagonalization is performed by
Householder transformation [14] and to improve the execu-
tion efficiency on modern high-performance architectures,
the WY representation technique [5, 34] is generally applied
to the transformation process. Another tridiagonalization
method is called 2-stage tridiagonalization [19], which firstly
reduces the matrix to a band form (1st stage) and then re-
duces the band form to a tridiagonal matrix (2nd stage). This
method is proved pretty efficient on multi-core architec-
tures [24, 25].

Another popular method is divide and conquer, and this
method is implemented in most of the linear algebra pack-
ages, including LAPACK [2], MAGMA [37] and CuSOLVER!,
Another flexible method is called bisection [10], which aims
to find a subset of eigenvalues, such as the largest/smallest
100 or all eigenvalues within interval [q, b]. Furthermore, in
2004, the MRRR [11] method was proposed. It seeks to com-
pute accurately orthogonal eigenvectors without expensive
(O(n®) worst-case) reorthogonalization.

!https://docs.nvidia.com/cuda/cusolver/index.html

https://docs.nvidia.com/cuda/cusolver/index.html

Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core

2.2 Other Eigen Decomposition Approaches

Polar decomposition [22] decomposes a matrix into a prod-
uct of an orthonormal matrix and a positive definite sym-
metric matrix. It is connected to EVD and SVD, so recently,
some new algorithms based on polar decomposition have
been proposed. QDWH-eig (QR-based dynamically weighted
Halley Eigenvalue decomposition) [30] uses QR factoriza-
tion to compute the polar decomposition and then factorize
the derived orthonormal matrix using the iterative subspace
method. Later in 2016, a GPU implementation [36] of QDWH-
eig and QDWH-SVD was proposed, but this work replaced
the QDWH-eig with the 2-stage EVD. Another method to
compute polar decomposition called scaled Newton [8] has
lesser mathematical operations than QDWH. However, it
highly relies on the backward stable inverse of a matrix.
Recently there has been growing interest in randomized
Linear algebra [28], particularly randomized subspace itera-

tion for computing a low-rank approximate eigenvalue/singular

value decomposition. Two algorithms among them are ran-
domized subspace iteration [16] and randomized block Lanc-
zos [40]. These two algorithms are proven efficient in real-
world applications, especially on modern high-performance
architectures [35, 43]. However, these algorithms are typ-
ically based on multiplying a randomly generated matrix,
which means they can only be applied to applications that
are not sensitive to accuracy.

2.3 Tensor-Core-based Linear Algebra Algorithms

Nvidia introduced Tensor Core accelerator technology in
2017 in its Volta architecture [27]. Later in 2020, the A100
GPU [9] was released with more powerful Tensor Core Units
whose half-precision GEMMs execution rate can boost to
300 TFLOPS. The Tensor Core unit is designed to accelerate
GEMMs in deep neural networks. Some other applications
seek the possibilities of utilizing Tensor Core to accelerate lin-
ear algebra algorithms, including the BLAS3 operations [42],
the LU factorization [20, 23] and the QR factorization [41, 44].

3 Background

This section will introduce some background knowledge and
related technologies and algorithms to band reduction.

3.1 Tridiagonalization

The tridiagonalization process is usually the pre-step to
eigenvalue decomposition. The goal of tridiagonalization
can be expressed as follows:

A=0"'xTxQ

Q is an orthogonal matrix, and T is a tridiagonal matrix. The
conventional method of using Householder reflections elim-
inates the elements except for the tridiagonal part. However,
only 50% of the computations can be fully blocked (BLAS3).
In other words, 50% computations are BLAS2 operations that

303

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Bandwidth>2
{_L\

Bandwidth=2
r

Band
Reduction| |

Bulge
Chasing

Figure 1. The 2-stage tridiagonalization

benefit less from modern hardware. Indeed, indicated by
the MAGMA ssyevd routine experimental results, the un-
blocked computations take over 90% of the execution time of
the tridiagonalization (ssytrd routine). An alternative way
to increase the blocking percentage is called 2-stage tridiago-
nalization [19, 24, 25]. This method adds the successive band
reduction before the tridiagonalization. Mathematically, the
successive band reduction can be expressed by this equation:
A = Q7! x B x Q where B is a band matrix with bandwidth
b. Moreover, this is the first stage. The second stage reduces
the band form to a tridiagonal form, called bulge chasing [6],
and the performance of the 2nd stage depends on the band-
width b. Figure 1 shows the general steps of the 2-stage
tridiagonalization.

3.2 Householder Transformation

The Householder reflector is an orthogonal projection con-
structed from reflection against a hyperplane. It is useful to
transform a given vector orthogonally to an axis (thereby
eliminating all components but one). Specifically, given a vec-
tor x, the orthogonal matrix H(v) = I-200” /(v7v) where v =
[|x||ey —x will map x to the first axis: H(v)x = [||x||,0, ..., 0]%.
The above transformation is a rank-1 update, in other words,
a BLAS2 operation. Fortunately, we can accumulate several
Householder transformations by the WY representation [5]
into a block to enrich BLAS3 operations. Suppose we have
k Householder matrices [Hy, Hy, ..., Hi], the WY representa-
tion will be:

HyHy—y..HoHy = 1 = Wi Y]
and if the (k + 1)-th block is factorized, then we have:
Hi=1- Wk+1yz+1

Yirr = [Yelyrs1]
Wit = [WielWist — Wi Y wias]

3.3 Full to Band Algorithm

The symmetric matrix Householder update, also called 2-side
update, is quite simple. See Figure 2. The first block includes
A; and the grey region named Panel. Because we want the
matrix to be reduced to band form, only the Panel needs to
be factorized. After the first step, we have QR(Panel) = (I —
WYT)R, and the R matrix will override the upper triangular
part of the Panel, and meanwhile, the lower triangular part

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Ay

Ay

Panel A,

Figure 2. The single step of the 2-side Householder update
upon a full matrix with block size k

of the Panel will be set to be 0s. And the further trailing
matrix update is 2-side:

Ay =T -wYDH) A, -wyT) (1)

In practice, we usually use a mathematically equivalent
ZY representation [12] to perform a rank-2k update upon
the trailing matrix A,:

1
Z =AW — EYWTAW (2)

Ay=A,-YZT —ZYT (3)

The rest of the updating process is similar, as we can regard
the updated A; as a new full matrix and factorize the matrix
iteratively.

4 Performance Analysis Between ZY-based
and WY-based Algorithms

This section will mainly discuss the differences between the
ZY-based and WY-based algorithms and explain why our
new WY-based algorithm can perform better in the context of
Tensor Core. We will also provide some experimental results
to prove that the WY-based algorithm has better GEMM
performance on Tensor Core.

4.1 General Performance of Tall and Skinny GEMM
on Tensor Core

Table 1 shows the two types of GEMMs in SBR. The first
one is a square matrix times a tall and skinny matrix, which
appears in Equation 1 and 2 (A X W); and the second one is
an outer product that appears in Equation 1 and 3(W x Y7,
Y x ZT and Z x YT). Note that Tensor Core does not yet
support the syr2k routine, so Equation 3 has to involve two
outer products.

According to Table 1, the performance of the GEMMs is
highly relevant to the k on Tensor Core, while the perfor-
mance of SGEMM is much more stable as k increases. This is
probably because the tall and skinny GEMM becomes mem-
ory bound rather than compute bound when the k is small,
and the time cost of launching kernel in TCGEMMs is not
trivial. Obviously, to improve the overall performance of SBR

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, and Panruo Wu

304

‘ x‘ = ® =

k TC-GEMM SGEMM TC-GEMM SGEMM

32 6.28 9.36 20.02 9.31
64 11.69 9.65 33.30 9.85
128 24.44 10.22 49.83 10.02
256 42.65 10.33 97.41 10.23
512 66.57 10.36 122.89 10.33
1024 85.73 10.40 138.82 10.37
2048 112.08 12.91 121.55 13.13
4096 133.17 15.31 140.85 14.33

Table 1. TCGEMM and SGEMM performance on A100 GPU
in TFLOPS as k changes from 32 to 4096 with fixed m =
32768. In columns 2-3, A € R™™ B € R™* In columns 4-5,
A € Rk B e Rkxm,

on Tensor Core, we want the k as large as possible. How-
ever, unfortunately, in terms of the conventional WY and ZY
representation algorithm, the k is fixed to be the bandwidth
typically less than 256. As the computational complexity of
bulge chasing is O(nk?), there is a cost to making the block
size too large.

4.2 An Alternative Method to Change the GEMM’s
Shape

Inspired by the Tensor-Core-based QR factorization [41],
the simple modification from the iterative method to the
recursive method can change the GEMM shapes and leads
to significant speedup. Nevertheless, the recursive strategy
does not seem to work for SBR. Unlike QR factorization, the
SBR is a two-side factorization; the trailing matrix cannot be
simply divided into left half and right half.

4.2.1 An attempt of changing the GEMM shapes with
ZY representation

Assume that the matrix Zy and Yy are the ZY representation
in the k-th iteration of SBR. Then the entire Z and the Y
matrix after the k-th iteration will be Z = [Z;|Z,]...|Zk]
and Y = [V1|Y2]...|Yx]. To ’squeeze’ the GEMMs, we can try
to combine several Z and Y vectors together and update
the trialing matrix one time. One solution is to figure out
a recursive strategy similar to the Tensor-Core-based QR
factorization [41]. However, unlike QR factorization, the
trailing matrix update is two-side in SBR. When we are trying
to update the next panel, we will need the previous trailing
matrix to be fully updated. The key idea of converting tall
and skinny GEMMs to square GEMMs in the recursive QR
factorization algorithm [41] is updating the trailing matrices
when we need to factorize them instead of updating the
whole trailing matrix in each iteration. This method works
well in the recursive QR factorization because it is a one-side

Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core

Figure 3. One hypothesis of SBR using ZY representation,
the green region is the panel to be updated and the matrix
with the blue outline is the trailing matrix

factorization. The right part of the matrix will not be touched
until it is factorized.

Unfortunately, things become different in the two-side
factorization. Figure 3 shows our hypothesis of using ZY
representation in SBR. Suppose we have eight blocks with
blocksize b and have already factorized the first block using
ZY representation. Now we only want to update the green
region (we can call it GA) in the matrix by GA = GA-ZY (1 :
b,:)T = YZ(1:b,:)T, while the brown region (BrA) is never
touched. The next step (2nd picture in Figure 3) is factorizing
the red region in the matrix and updating the green region
(GA). The next step is updating the GA in the second picture,
and if we have the Y = [y1|yz2];Z = [z1]|z2] then the GA
can be updated easily by GA = -ZY(1: 2% b,:)T —YZ(1 :
2% b, :)T. However, the problem is how to obtain Z,. As
we mentioned before, the matrix Z is related to the trailing
matrix, actually if we already have the w; and y,, and suppose
the region with blue contour to be BA we can compute the
z3 by z2 = BAX wy — %yzsz X BA X wy. However, to deduce
the correct GA, the submatrix BA needs to be updated by
BA = BA—z1y1(b+1: n,:)T —y1z1(b+1: n,:)T at first, which
also includes the tall and skinny matrix multiplications. And
we did not find a way to bypass the update of the entire
trailing matrix with ZY representation.

4.2.2 Change the GEMM shapes with WY
representation

An alternative strategy is using WY representation. The
difference between the WY representation and the ZY rep-
resentation in terms of trailing matrix update is that the
WY representation updates the matrix by multiplications. In
contrast, the ZY representation uses successive subtractions.
Besides, updating the W matrix in WY representation does
not require updating the entire trailing matrix. Instead, it
only needs the updated panel. These properties of WY repre-
sentation allow us to accumulate the Householder matrices
and update the trailing matrix at once at the cost of more
computations and memory usage because it has to update
the W matrix in each iteration.

305

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

(b)

(c)

(d)

Figure 4. The WY-based SBR, the red region is the panel to
be factorized, and the green region is the trailing matrix. The
matrix inside the blue outline denotes the original matrix

Figure 4 depicts the several steps of the WY-based SBR
before the first large iteration. Definitely the first step is QR
factorize the red panel in (a) and get w; and y;. In order
to only update the green region (GA) in (b) we will let y =
y1(1 : b,:) and use y instead of the entire y; in the right
multiplication. Then the GA = (I - ylw{) X GAX (I-wyyT).
The next step will be a panel factorization of the red region in
(c) and form a new Y = [y1]y2] and W = [wq|w, — lelTwz].
Before the recursion, we need to update the entire trailing
matrix. Because we have never touched the green region
in (d) before, we still have to use the submatrix with the
blue outline (BA) of the original matrix. Then we replace
the Y by Y(2+ b + 1 : n,:) and finally update the GA =
(I-YWT)xBAx (I-wYT).

Algorithm 1 gives the Matlab prototype of the WY-based
SBR. A parameter nb should be given as a larger blocksize
that inside the big block, only the panels will be updated;
outside the big block, the whole trailing matrix will be up-
dated.

4.3 GEMMs Performance Evaluation
4.3.1 Arithmetic Operations:

One of the differences between conventional ZY represen-
tation and Algorithm 1 is the number of arithmetic opera-
tions. The increment of operations in Algorithm 1 includes
constructing the W matrix in the inner loop and the larger
GEMM at lines 9, 13 in Algorithm 1 as we always have to use

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Algorithm 1 Recursive WY-based Symmetric Band Reduc-
tion with blocksize nb

1 function [A] = sy2sb(A, oriA)

2 n = length(A);

3 OA=oriA(b+1:n, b+1:n);

4 for i=1:b:nb

5 [w,yl=PanelQR(A(it+b+1:n, i:itb));

6 Y=[Y yI1;

7 W=[W w-WxY'xw];

8 GA=A(itb+1:n, i+b+1:i+2%b);

9 GA=(I-WxY"') '*xOA*(I-WxY(i:i+nb,:)");
10 A(i+b+1:n, i+b+1:i+2%b)=GA;

11 end

GA=A(nb+1:n, nb+1:n);

A(nb+1:n,nb+1:n)=sy2sb(GA,GA);

15 end
Y WY
blocksize | 128 | 128 | 256 | 512 | 1024 | 2048 | 4096
FLOPS 070 | 0.93 | 1.05 | 1.12 | 1.17 | 1.22 | 1.31

Table 2. The real number of arithmetic operations of ZY-
based SBR (bandwidth 128) and WY-based SBR (with dif-
ferent block sizes from 128 to 4096); the exponent of the
numbers is 1014

the original matrix in the inner loop. And we will discuss
them in sequence.

To show the increment of arithmetic operations intuitively,
we compute the number of operations in ZY-based and WY-
based algorithms, respectively, with matrix size 3276832768
in Table 2. The number of operations increases considerably
as the block size rises, indicating why the ZY-based algorithm
is more popular on the previous hardware.

4.3.2 Experimental Results of GEMMs Performance

The WY-based SBR does convert some of the tall and skinny
matrix multiplications to relatively square matrix multipli-
cations. However, the problem is that it increases the total
mathematical operations, which include forming the blocked
W matrix and larger matrix sizes because the large subma-
trix (line 3 in Algo 1) of the original matrix is always reused
inside the large block. Therefore, whether the WY-based
algorithm can bring speedup remains unknown.

Let us start with the performance evaluation when the
blocksize nb changes. The smaller nb leads to fewer compu-
tations but more tall and skinny GEMMs, while the larger
nb brings more computations and square GEMMs. Our in-
tuition is that there exists one nb that can give us the best
performance, and Figure 5 supports our speculation. When
nb is less than 1024, although the floating-point operations
increase, the GEMMs rate increment from square GEMMs

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, and Panruo Wu

GA=(I-WxY(nb+1:n,:) ") 'x0A*(I-WxY(nb+1:n,:)");

306

3000

2500

ms

~=2000
(0]

1500

1000 |

Elapsed Tim

500 -

4096

2048

128 256 512 1024
Block Size

Figure 5. The total elapsed time of TCGEMMs in Algo 1 as
the block size changes from 128 to 4096. The numbers upon
the points are the TFLOPs of the TCGEMM:s.

dominates the overall performance improvement. Neverthe-
less, when nb is larger than 1024, the rise of computations
prevents the performance from improving,.

Fix nb to be 1024, and Figure 6 compares the total execu-
tion time of the GEMM:s between the two different strategies.
When the matrix is as small as 4096, the WY-based algorithm
does not have an advantage over the ZY-based algorithm.
This is obvious because the GEMM execution rate in the two
algorithms is similar when the matrix size is small. Therefore
the change of GEMM shapes does not help. In contrast, the
increment of the mathematical operations cannot be over-
looked. Furthermore, that is why when the size is 4096 and
8192, the GEMM execution time in the WY-based algorithm
is longer than in the ZY-based algorithm. However, when the
size is quite large, the better shapes of the GEMMs improve
the performance significantly. For instance, when the matrix
size is 32768, the inside GEMMs in the WY-based algorithm
can reach 240 TFLOPs, while the highest GEMM rate in the
ZY-based algorithm is only around 50 TLFOPs. This means
that even though we are doing more computations in the
WY-based algorithm, the overall performance of GEMM:s can
still benefit a lot from the relatively square GEMMs (around
1.5x speedup in terms of GEMMs). We also perform another
experiment on testing the SGEMMs and show the results in
Figure 7. According to Table 1, the SGEMM cannot benefit
from the square shapes. As a result, we can find in Figure 7
that if TCGEMM:s are replaced with SGEMMs, the ZY-based
algorithm can have better performance, which means the
WY-based algorithm only brings speedup with Tensor Core
support.

4.4 Forming Eigenvectors

The GEMMs are even more efficient when the eigenvectors
are needed with the WY-based algorithm. Because forming
the W matrix (back transformation) in the inner product is
not wasted at all. As the W matrix is fully obtained in each
inner loop, so the final matrix W will be of this form: W =
[Wi|W,|...|Wi] where k = n/nb. Then forming the entire W
will be quite easy, and it can be formed in a recursive way to

Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core

wy Y

4096 8192 12288 16384 20480 24576 28672 32768

Matrix Size

Figure 6. The total elapsed time comparison of the
TCGEMMs in WY-based algorithm and the ZY-based algo-
rithm, the block size in the WY-based algorithm is fixed to
be 1024

== WY == ZY
8000
7000
@
é 6000
v 5000
£
i~ 4000
el
2 3000
Q
©
= 2000
1000
0 ==
4096 8192 12288 16384 20480 24576 28672 32768
Matrix Size

Figure 7. The total elapsed time comparison of the SGEMMs
in the WY-based algorithm and the ZY-based algorithm, the
block size in the WY-based algorithm is also fixed to be 1024

Algorithm 2 Recursive W construction with blocksize nb

1 function [W] = FormW(W,Y)
2 n=length(W);

3 if n<=2*nb

4 Wi=W(:,1:nb);

5 W2=W(:,nb+1:2*nb);

6 Y1=Y(:,1:nb);

7 W=[W1|W2-W1%Y1'xW2];

8 end

9 %left recurse

10 Wi=FormW(W(:,1:n/2), Y(:,1:n/2));
1 %right recurse

12 W2=FormW(W(:,n/2+1:n), Y(:,n/2+1:n));
W=[W1|W2-W1%Y1'*W2];
end

’squeeze’ the GEMMs. See Algo 2 for details. And based on
our experiments, given a matrix whose size is 32768 X 32768,

307

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

MAGMA cusolver TSQR

2500

< 2000
£
@

£ 1500
=

3 1000
0
Q
T

w500

0

4096 8192 12288 16384 20480 24576 28672 32768

Matrix Size

Figure 8. The total elapsed time of panel QR factorization
comparison between MAGMA, cuSOLVER and our TSQR
implementation,

the back transformation takes 320ms vs. 420ms in the WY-
based and ZY-based algorithms, respectively, which gives
around another 10% acceleration.

5 Implementation and Optimization

In this section, we will address our GPU implementation
and the optimization strategy to improve performance and
accuracy.

5.1 Tall and Skinny Panel QR Factorization

Figure 2 shows that the panel is tall and skinny when the
bandwidth is small. Because of low data locality and paral-
lelism, factorizing such a matrix shape is much slower than

factorizing a square matrix, especially on a GPU. Communication-

Avoiding QR (CAQR) [3] factorization algorithm efficiently
performs QR factorization. Tall-Skinny QR (TSQR) is a par-
ticular case of CAQR that only deals with tall and skinny
matrices. And the general idea and implementation can be
found in the Tensor-Core-based QR paper [41]. But there
are still some modifications: 1)we apply Householder trans-
formation rather than modified Gram-Schmidt process on
each small block to maintain the stability; 2)each warp is
in charge of one column instead of one row to get better
performance.

We evaluate the panel factorization in band reduction as
matrix size changes from 4096 to 32768, by comparing the
panel factorization execution time in MAGMA (ssytrd_sy2sb ?
routine), cuSOLVER (sgeqrf and sorgqgr routine) and our
TSQR; see Figure 8. Note that the elapsed time in Figure 8 is
not the pure QR factorization; it also includes reconstructing
the W and Y matrices, which will be discussed in the next
section, in cuSOLVER and the TSQR implementation.

2Symmetric matrix to symmetric band form

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

5.2 Reconstruct Householder Vectors

Although TSQR can accelerate the panel compared to cu-
SOLVER SGEQRF (), there is still a problem that, unlike cu-
SOLVER SGEQRF (), what we obtain from TSQR is the explicit
Q. In contrast, cuSOLVER SGEQRF () provides Householder
vectors. Moreover, with the explicit Q instead of House-
holder vectors, the further trailing matrix updates will lead
to unstable results. Therefore, it is necessary to develop an
algorithm that can output Householder vectors from the
explicit Q formed by TSQR. One solution is to reconstruct
Householder vectors by the explicit Q [4]. The idea is as
follows. Given an orthogonal matrix, Q can be represented
asQ =1-YxTxY" (memory-efficient WY representation),
and this equation can also be modifiedto - Q = Y x T x Y.
Y is a lower triangular matrix, and T is an upper triangular
matrix. Hence, it can be regarded as a LU factorization with
I-Q=LxU=(Y)x(TxYT). The paper[4] also reports
that the LU factorization provides unique L and U, and par-
tial pivoting is unnecessary. In our algorithm, we factorize
the upper n X n part of the matrix I — Q, and then we do a
triangular solve (STRSM) to get the whole L matrix. After ob-
taining the Householder vectors L from LU factorization, we
do another triangular solve to construct W; see Algorithm 3.

Algorithm 3 Reconstruct WY representation by explicit Q
generated from TSQR

1 function [W,Y] = ReconstructWY(Q)

2 [m,n] = size(Q);

3 I = eye(m,n);

. A= I-Q;

5 [L1,U] = non_pivoting_LU(A(1:n,:));

6 L2 = A(n+1:m, :)/U;
7 Y=[L1;L2];

8 W=A/Y";

s end

Ballard et al. perform a LU factorization on Q — S [4],
where S is a diagonal sign matrix corresponding to the sign
choices made inside the Householder QR algorithm. Note
that this step is also essential to avoid rank deficiency in the
LU factorization. And combining this algorithm with our
TSQR implementation, we can have the panel factorization
that generates W and Y.

5.3 Error Correction Tensor-Core-based GEMMs

The Refined TCGEMM [31] is a Tensor Core-based GEMM
that provides the same accuracy as CUBLAS SGEMM us-
ing FP32 but exceeds the theoretical peak performance of
FP32, yielding a much higher throughput. They are an en-
hanced version of the error correction methods proposed by
Markidis [26] to perform matrix-matrix multiplication on
Tensor Core. Implementing error-correcting methods would

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, and Panruo Wu

308

not provide the accurate results of matrix-matrix multipli-
cation on FP32 SIMT cores. The key to achieving this high
accuracy is dealing with rounding off inside Tensor Cores.
Refined TCGEMM saves the mantissa loss and uses it to
correct the accuracy of matrix-matrix multiplication. This
high-accuracy, high-performance, and low-power consum-
ing implementation is developed in NVIDIA’s CUTLASS
library and achieves 51TFLOPS/s for limited exponent range
and 33TFLOPS/s for full exponent range of FP32 using TF32
Tensor Cores on NVIDIA A100 GPU. This implementation
outperforms the theoretical FP32 SIMT Core peak perfor-
mance of 19.5TFLOPS/s.

To be more specific, consider a GEMM C = A X B. To com-
pute this GEMM on Tensor Core, the truncation of A and B
from FP32 to FP16 should be performed in advance. Then we
have A= A+AAand B = B+AB, where the A and B is stored
in FP16 precision. The TCGEMM with FP32 accumulation is
actually doing C = A x B and the accurate result should be
C = (A+AA) X (B+AB) = AXB+AXAB+AAxB+AAXAB.In
practice, the AAX AB is so trivial that it can be typically over-
looked. Therefore, performing two extra TCGEMMs seems
to recover the accuracy loss. But the rounding errors inside
Tensor Core and the underflow problems still prevent the
naive recovering solution from getting accurate results. As a
result, the authors also apply two other methods to solve the
problem: 1)try to avoid the rounding for accumulation inside
Tensor Cores to recover the FP32 accuracy; and 2) try to
scale the matrix to reduce underflow. And finally, the refined
TCGEMMs can outperform the SGEMMs and meanwhile
bring the accuracy back to single precision. And we will also
show the performance impact of using the error correlation
TCGEMMs in our SBR in Figure 10.

6 Experimental Evaluation

We use a 5.4.0-99-generic Linux operating system with NVIDIA
A100 GPU (A100-PCIE-40GB) for all the experiments. The
CUDA version is 11.2, which contains a C++ compiler and
libraries cuBLAS and cuSOLVER. For the EVD case study
experiments, we use the random matrix generation routine
(magma_generate) from MAGMA 2.6.1 to generate a random
matrix with a specific condition number and singular value
distribution.

6.1 The Effect of TSQR Panel and Tensor Core
Regarding Band Reduction

The panel factorization and the Tensor Core play essential
roles in the entire band reduction. Figure 9 illustrates the
impact of using the TSQR panel and Tensor Core on the
entire SBR execution time. When the matrix size is small, the
TSQR panel is more critical; in contrast, when the matrix is
large, Tensor Core contributes more acceleration. For exam-
ple, without Tensor Core, the performance of the WY-based

Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core

MAGMA TCGEMM and TSQR ==@=SGEMM cuSOVLER QR
8000
7000

m

£ 6000

® 5000

£

i= 4000

e

@ 3000

Q

- 2000

w
1000

4096 8192 12288 16384 20480

Matrix Size

24576 28672 32768

Figure 9. The total elapsed time comparison of the band re-
duction in WY-based algorithm with comparison to MAGMA
band reduction baseline (orange line). Three settings of the
implementation include Tensor Core on and TSQR on (grey
line), Tensor Core off and TSQR on (blue line), and Tensor
Core on and TSQR off (yellow line, using cuSOLVER QR
instead of TSQR)

MAGMA WY =@= WYwith EC-TCGEMM zv
8000
__ 7000 3.7x
£ 6000
@ 5000 3.5%
i 4000 3.6x
g 3000 a7 3.7x
© 2000 35x _»
“ 1000 ﬁxl

4096 8192 12288 16384 20480 24576 28672 32768

Matrix Size

Figure 10. The total elapsed time comparison of the band
reduction between the WY-based algorithm, WY-based
algorithm with EC-TCGEMMs, ZY-based algorithm, and
MAGMA baseline

algorithm is even worse than MAGMA when the matrix size
is large.

6.2 Overall Performance of Band Reduction

The overall performance improvement compared to the MAGMA

implementation is also shown in Figure 10, and the num-
bers over the orange line denote the speedup between the
WY-based algorithm and the MAGMA sy2sb routine. Our
WY-based implementation is much faster than the MAGMA
relative routine. When the matrix size is huge (larger than
20,000), the WY-based algorithm also brings about a 1.3x
speedup than the conventional ZY-based algorithm. If the
TCGEMMs in the WY-based algorithm are replaced with
EC-TCGEMMs (blue line), the overall band reduction per-
formance is still slightly better than the MAGMA baseline
(around 1.3x).

309

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Matrix type Backward error | Orthogonality
Normal 9.45e-04 5.27e-04
Uniform 4.73e-04 5.45e-04

SVD_Cluster0 1e5 9.34e-04 4.17e-04
SVD_Cluster1 1e5 9.45e-04 6.89e-04
SVD_Arith 1lel 9.45e-04 4.89e-04
SVD_Arith 1e3 9.45e-04 7.09e-04
SVD_Arith 1e5 9.45e-04 4.39e-04
SVD_Geo 1el 9.45e-04 7.39e-04
SVD_Geo 1e3 9.46e-04 4.21e-04
SVD_Geo 1e5 9.45e-04 3.68e-04

Table 3. The backward error (Ep, 2nd column) and the or-
thogonality (E,, 3rd column) of our Tensor Core-based SBR
with different matrix types

6.3 Accuracy

As we will compute the eigenvalues in the following exper-
iments (section 6.4.2), the accuracy of the eigenvalues of
the band matrix is not that necessary. Thus, in this section,
we will only consider the backward stability [21] and the
orthogonality of our implementation.

The backward error (orthogonal transformation error) of
the band reduction is defined as:

_ A= QxBXx Q||
N x[AllF

Ep

where A is the matrix that needs to be factorized, B is the
band matrix, and Q is the orthogonal matrix that can be used
to form the eigenvectors. And the orthogonality:

_ =07 xQllr

E, N

denotes if the transformation matrices Q are orthogonal.

Theoretically, the backward error and the orthogonality
should be bounded by the machine € because the TSQR,
as well as the band reduction algorithms, are proven to be
backward stable. In the context of Tensor Core computations,
the machine € is 1le — 4. Table 3 gives the errors of the band
reduction with different matrix types and condition numbers,
which MGAMA generates. The SVD_NAME’ means the
singular values of the generated matrix obey the 'NAME’
distribution, and the number next to the matrix type is the
condition number. For example, SVD_Arith 1e5 denotes the
singular values of the matrix are arithmetically distributed
with S;ax/Smin = 1€5. And it is obvious in Table 3 that both
backward errors and orthogonality of the band reduction are
bounded by the machine € of Tensor Core. In addition, the
bulge chasing process and 2nd stage in MAGMA are stable,
which means once our SBR is stable, the entire EVD will also
be stable.

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

=@=NMAGMA =@= VY

25000

1.7x

1.7>%/Q
1.8x///
19X/

2l

20000
15000

10000 2

Elapsed Time (ms)

5000

4096 8192 12288 16384 20480 24576 28672 32768

Matrix Size

Figure 11. The total elapsed time comparison of the 2-stage
EVD between our WY-based SBR and MAGMA baseline

6.4 A Case Study of eigenvalue Decomposition

As we have a faster band reduction implementation, it is
worthwhile to use this module to solve the eigen problems.
Still, we will consider the performance and the accuracy.

6.4.1 Performance

The implementation of the eigensolver is quite simple. We
start everything and compute the band reduction on GPU,
transfer the band matrix to CPU, and then use MAGMA to
perform the bulge chasing and divide and conquer algorithm.
Note that the execution time of our implementation includes
the data movement from device to host (the rate is around
12GB/s). See Figure 11. To get the best performance of the
eigenvalue in MAGMA, we set the number of MKL threads
tobe 1,1, 4,8, 8, 12, 16, 16 for matrix from 4096 to 32768,
respectively. The results indicate that with our Tensor Core-
based band reduction, the eigenvalue decomposition (no
eigenvectors) can be accelerated around 2x.

6.4.2 Accuracy

We did not perform the EVD with eigenvectors generated,
so the accuracy measurement will only be the eigenvalues.
And the error can be expressed as:

— ||Ds _Dtc||2
* T NX|IDlz

where Dy is the real eigenvalues computed by LAPACK and
the D is the eigenvalues from the band matrix computed
by Tensor Core. Similar to the accuracy experiments of band
reduction, we also test the accuracy with different matrix
types. See Table 4. Still, the numbers next to the matrix type
denote the condition number. As we can observe in the table,
the accuracy level of our implementation is pretty good.
Indeed, for the SVD geometric distribution with condition
numbers 1e3 and 1e5, the checking function in MAGMA even
gives a pass symbol. The results indicate that our Tensor
Core implementation is able to compute the eigenvalues
with the machine e tolerance. If we do not need accurate
results or want to use the EVD as a pre-step in low-rank

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, and Panruo Wu

310

Matrix type Tensor Core | MAGMA
Normal 7.21E-05 4.59E-06
Uniform 1.38E-04 5.19E-07

SVD_Cluster0 1e5 3.59E-05 1.64E-07
SVD_Cluster1 1e5 8.80E-05 1.37E-06
SVD_Arith 1el 7.58E-05 4.51E-06
SVD_Arith 1e3 8.46E-05 1.39E-05
SVD_Arith 1e5 6.81E-05 1.67E-05
SVD_Geo lel 5.77E-05 2.05E-06
SVD_Geo 1e3 5.11E-05 4.43E-06
SVD_Geo 1e5 5.20E-05 3.68E-06

Table 4. The accuracy comparison of the eigenvalues (E;)
between our Tensor Core implementation (2nd column) and
MAGMA ssyevdx() routine (3rd column) with different ma-
trix types

approximation [40], the Tensor Core-based implementation
will meet our requirement. Otherwise, we can replace the
TCGEMMs with EC-TCGEMMs to get more accurate results.

7 Conclusion and Future Work

In this paper, we propose a Tensor Core GPU implementation
of the symmetric band reduction which can bring up to
3.7x speedup compared to the state-of-the-art SBR software.
We have evaluated the TSQR factorization and replaced the
general Householder QR factorization, which is much faster
than cuSOLVER and MAGMA. To ensure the QR results can
be utilized in further computations, we use non-pivoting
LU factorization to reconstruct the WY representation from
the explicit Q. We abandon the traditional ZY-based method
in terms of the trailing matrix update. Instead, we use the
WY representation to update the trailing matrix to convert
the tall and skinny GEMMs to relatively square GEMMs.
Although the WY-based algorithm brings more mathematical
operations, the performance of the new sizes of GEMMs
proves the attempt, which shows a 1.5x speedup regarding
GEMMs, to be worthy. In addition, to recover the accuracy
loss generated by Tensor Core, we use EC-TCGEMMs, which
have the same accuracy as SGEMM but are faster. We also
did a case study based on the MAGMA’s implementation of
the 2nd stage of the tridiagonalization and the divide and
conquer method and obtained up to 2.3x speedup.

However, there are also some limitations of the Tensor-
Core-based SBR. First, the target precision is single precision,
which means this algorithm cannot work when a double-
precision result is needed. Secondly, the WY-based method
only performs better on Tensor Core because, without Ten-
sor Core, the speedup which benefits from GEMMs’ shapes
cannot counteract the performance decrease from the in-
crement of mathematical operations. Thirdly, the proposed
algorithm requires more device memory to store the original
matrix and the WY representation.

Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core

The research areas on eigenproblems are so broad that
band reduction is only a tiny part of the eigenproblems. More-
over, even in the symmetric band reduction algorithm, we
can still do furthermore works to optimize it. For example,
we can try to implement the Tensor-Core-based symmetric
rank 2k update (syr2k). Indeed, in our current program, this
kind of GEMM is regarded as a normal GEMM that does 2x
more computations because it does not utilize the symmetric
property of the matrix. Additionally, in terms of the entire
EVD, we are only implementing the 1st stage of tridiagonal-
ization, the 2nd stage, and the divide and conquer algorithm
called the MAGMA routines. So the data movement between
GPU and CPU still costs some time. As a result, we try to use
GPU in the 2nd stage. Iterative methods on GPU will also
be considered in the future. Additionally, the error analysis
of the Tensor-Core-based eigen problems also needs more
attention. Based on our previous investigation on Tensor-
Core-based computations, the error is typically bounded by
the machine €. For Tensor Core, it is 1e-4. However, accord-
ing to our experiments on computing the eigenvalues, the
accuracy is better than our expectation, nearly 1e-5. Unfor-
tunately, we only provide the experimental accuracy results.
This is because analyzing the errors will be out of scope
and can be a separate paper, as the theoretical error analysis
is too complicated. Hopefully, we can theoretically analyze
the mathematical reasons behind the experimental results
and explain them soon. Besides, we can also try to recover
the precision with the method proposed in 2021 [38] in the
future.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant 2146509. Any opinions, find-
ings, conclusions, or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. We are grateful
for the support of the Research Computing Data Core at the
University of Houston for assistance with the calculations
carried out in this work. We would also like to thank the
YOKOTA Laboratory of Tokyo Insititute of Technology for
the Hinadori Cluster, which is supported by JSPS KAKENHI
Grant Number JP20K20624, and JP18H03248.

References

[1] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis.
Wiley interdisciplinary reviews: computational statistics 2, 4 (2010), 433—
459.

[2] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, Alan McKenney, et al. 1999. LAPACK Users’ guide.
SIAM.

[3] Michael Anderson, Grey Ballard, James Demmel, and Kurt Keutzer.
2011. Communication-avoiding QR decomposition for GPUs. In 2011
IEEE International Parallel & Distributed Processing Symposium. IEEE,
48-58.

311

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

[4] Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin,
Hong Diep Nguyen, and Edgar Solomonik. 2014. Reconstructing
Householder vectors from tall-skinny QR. In 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium. IEEE, 1159-1170.
Christian Bischof and Charles Van Loan. 1987. The WY representation
for products of Householder matrices. SIAM ¥. Sci. Statist. Comput. 8,
1(1987), s2—s13.
Christian H Bischof, Bruno Lang, and Xiaobai Sun. 2000. A framework
for symmetric band reduction. ACM Transactions on Mathematical
Software (TOMS) 26, 4 (2000), 581-601.
Christian H. Bischof, Xiaobai Sun, and Bruno Lang. 1994. Parallel
tridiagonalization through two-step band reduction. Proceedings of
IEEE Scalable High Performance Computing Conference (1994), 23-27.
Ralph Byers and Hongguo Xu. 2008. A new scaling for Newton’s
iteration for the polar decomposition and its backward stability. SIAM
. Matrix Anal. Appl. 30, 2 (2008), 822-843.
Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and
Ronny Krashinsky. 2021. Nvidia a100 tensor core gpu: Performance
and innovation. IEEE Micro 41, 2 (2021), 29-35.
RZ Dautov, AD Lyashko, and SI Solov’ev. 1994. The bisection method
for symmetrie eigenvalue problems with a parameter entering nonlin-
early. (1994).
Inderjit S Dhillon and Beresford N Parlett. 2004. Multiple representa-
tions to compute orthogonal eigenvectors of symmetric tridiagonal
matrices. Linear Algebra Appl. 387 (2004), 1-28.
Jack J Dongarra, Danny C Sorensen, and Sven] Hammarling. 1989.
Block reduction of matrices to condensed forms for eigenvalue com-
putations. J. Comput. Appl. Math. 27, 1-2 (1989), 215-227.
Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations
(third ed.). The Johns Hopkins University Press.
Gene H Golub and Charles F Van Loan. 2013. Matrix computations.
JHU press.
Roger Grimes, Henry Krakauer, John Lewis, Horst Simon, and Su-Hai
Wei. 1987. The solution of large dense generalized eigenvalue problems
on the Cray X-MP/24 with SSD. J. Comput. Phys. 69, 2 (1987), 471-481.
Ming Gu. 2015. Subspace iteration randomization and singular value
problems. SIAM Journal on Scientific Computing 37, 3 (2015), A1139—
A1173.
Vineet Gupta, Tomer Koren, and Yoram Singer. 2018. Shampoo: Pre-
conditioned stochastic tensor optimization. In International Conference
on Machine Learning. PMLR, 1842-1850.
Azzam Haidar, Hatem Ltaief, and Jack Dongarra. 2011. Parallel Re-
duction to Condensed Forms for Symmetric Eigenvalue Problems
Using Aggregated Fine-Grained and Memory-Aware Kernels. In Pro-
ceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’11). Association for
Computing Machinery, New York, NY, USA, Article 8, 11 pages.
https://doi.org/10.1145/2063384.2063394
Azzam Haidar, Hatem Ltaief, and Jack Dongarra. 2011. Parallel reduc-
tion to condensed forms for symmetric eigenvalue problems using
aggregated fine-grained and memory-aware kernels. In Proceedings of
2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1-11.
Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J
Higham. 2018. Harnessing GPU tensor cores for fast FP16 arithmetic
to speed up mixed-precision iterative refinement solvers. In SC18: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 603-613.
Desmond J Higham and Nicholas J Higham. 1998. Structured backward
error and condition of generalized eigenvalue problems. SIAM J. Matrix
Anal. Appl. 20, 2 (1998), 493-512.
[22] Nicholas J Higham. 1986. Computing the polar decomposition—with
applications. SIAM J. Sci. Statist. Comput. 7, 4 (1986), 1160-1174.

5

—

[6

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

https://doi.org/10.1145/2063384.2063394

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

(23]

[24]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36

=

(37]

(38

=

(39]

(40]

Florent Lopez and Théo Mary. 2020. Mixed Precision LU Factoriza-
tion on GPU Tensor Cores: Reducing Data Movement and Memory
Footprint. (2020).

Hatem Ltaief, Piotr Luszczek, Azzam Haidar, and Jack Dongarra. 2012.
Solving the generalized symmetric eigenvalue problem using tile algo-
rithms on multicore architectures. In Applications, Tools and Techniques
on the Road to Exascale Computing. I0S Press, 397-404.

Piotr Luszczek, Hatem Ltaief, and Jack Dongarra. 2011. Two-stage
tridiagonal reduction for dense symmetric matrices using tile algo-
rithms on multicore architectures. In 2011 IEEE International Parallel
& Distributed Processing Symposium. IEEE, 944-955.

Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S. Vetter. 2018. NVIDIA Tensor Core Programmability,
Performance & Precision. In 2018 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). IEEE. https:
//doi.org/10.1109/ipdpsw.2018.00091

Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S Vetter. 2018. Nvidia tensor core programmability, perfor-
mance & precision. In 2018 IEEE international parallel and distributed
processing symposium workshops (IPDPSW). IEEE, 522-531.

PG Martinsson and JA Tropp. [n.d.]. Randomized numerical linear alge-
bra: foundations & algorithms (2020). arXiv preprint arXiv:2002.01387
([n.d.].

Per-Gunnar Martinsson and Sergey Voronin. 2016. A randomized
blocked algorithm for efficiently computing rank-revealing factoriza-
tions of matrices. SIAM Journal on Scientific Computing 38, 5 (2016),
5485-S507.

Yuji Nakatsukasa and Nicholas J Higham. 2013. Stable and efficient
spectral divide and conquer algorithms for the symmetric eigenvalue
decomposition and the SVD. SIAM Journal on Scientific Computing 35,
3(2013), A1325-A1349.

Hiroyuki Ootomo and Rio Yokota. 2022. Recovering single precision
accuracy from Tensor Cores while surpassing the FP32 theoretical
peak performance. arXiv preprint arXiv:2203.03341 (2022).

Matt Probert. 2011. Electronic Structure: Basic Theory and Prac-
tical Methods, by Richard M. Martin: Scope: graduate level text-
book. Level: theoretical materials scientists/condensed matter physi-
cists/computational chemists.

Notker Résch, Sven Kriiger, Vladimir A Nasluzov, and Alexei V
Matveev. 2005. ParaGauss: The density functional program paragauss
for complex systems in chemistry. In High Performance Computing in
Science and Engineering, Garching 2004. Springer, 285-296.

Robert Schreiber and Charles Van Loan. 1989. A storage-efficient WY
representation for products of Householder transformations. SIAM J.
Sci. Statist. Comput. 10, 1 (1989), 53-57.

Ruchi Shah, Shaoshuai Zhang, Ying Lin, and Panruo Wu. 2019. xSVM:
Scalable distributed kernel support vector machine training. In 2019
IEEE International Conference on Big Data (Big Data). IEEE, 155-164.
Dalal Sukkari, Hatem Ltaief, and David Keyes. 2016. A high per-
formance QDWH-SVD solver using hardware accelerators. ACM
Transactions on Mathematical Software (TOMS) 43, 1 (2016), 1-25.
Stanimire Tomov, Rajib Nath, Peng Du, and Jack Dongarra. 2011.
MAGMA Users’ Guide. ICL, UTK (November 2009) (2011).
YAOHUNG M Tsai, PIOTR Luszczek, and JACK Dongarra. 2021. Mixed-
precision algorithm for finding selected eigenvalues and eigenvectors of
symmetric and Hermitian matrices. Technical Report. Technical report
ICL-UT-21-05, Innovative Computing Laboratory, The

David S Watkins. 1982. Understanding the QR algorithm. SIAM review
24, 4 (1982), 427-440.

Qiaochu Yuan, Ming Gu, and Bo Li. 2018. Superlinear convergence
of randomized block lanczos algorithm. In 2018 IEEE International
Conference on Data Mining (ICDM). IEEE, 1404-1409.

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, and Panruo Wu

312

[41]

[42]

[43]

[44]

Shaoshuai Zhang, Elaheh Baharlouei, and Panruo Wu. 2020. High
accuracy matrix computations on neural engines: A study of qr fac-
torization and its applications. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing.
17-28.

Shaoshuai Zhang, Vivek Karihaloo, and Panruo Wu. 2020. Basic Lin-
ear Algebra Operations on TensorCore GPU. In 2020 [EEE/ACM 11th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA). IEEE, 44-52.

Shaoshuai Zhang, Ruchi Shah, and Panruo Wu. 2020. TensorSVM:
accelerating kernel machines with tensor engine. In Proceedings of the
34th ACM International Conference on Supercomputing. 1-11.
Shaoshuai Zhang and Panruo Wu. 2021. Recursion Brings Speedup
to Out-of-Core TensorCore-based Linear Algebra Algorithms: A Case
Study of Classic Gram-Schmidt QR Factorization. In 50th International
Conference on Parallel Processing. 1-11.

https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1109/ipdpsw.2018.00091

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tridiagonalization and Tridiagonal Solver
	2.2 Other Eigen Decomposition Approaches
	2.3 Tensor-Core-based Linear Algebra Algorithms

	3 Background
	3.1 Tridiagonalization
	3.2 Householder Transformation
	3.3 Full to Band Algorithm

	4 Performance Analysis Between ZY-based and WY-based Algorithms
	4.1 General Performance of Tall and Skinny GEMM on Tensor Core
	4.2 An Alternative Method to Change the GEMM's Shape
	4.3 GEMMs Performance Evaluation
	4.4 Forming Eigenvectors

	5 Implementation and Optimization
	5.1 Tall and Skinny Panel QR Factorization
	5.2 Reconstruct Householder Vectors
	5.3 Error Correction Tensor-Core-based GEMMs

	6 Experimental Evaluation
	6.1 The Effect of TSQR Panel and Tensor Core Regarding Band Reduction
	6.2 Overall Performance of Band Reduction
	6.3 Accuracy
	6.4 A Case Study of eigenvalue Decomposition

	7 Conclusion and Future Work
	References

