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ABSTRACT

This paper explores the use of Tensor Engines to accelerate non-
linear and linear SVM training. Support Vector Machine(SVM) is a
classical machine learning model for classification and regression
and remains to be the state-of-the-art model for some tasks such
as text classification and bioinformatics. However large scale SVM
training is still challenging because of its high computational com-
plexity. This is especially severe for non-linear SVM with kernel
tricks. On the other hand, the surging importance of neural net-
works fuels the emergence of specialized processors called Tensor
Units (TensorCore in GPU and Tensor Processing Unit of Google)
which are characterized by extreme efficiency and very limited
precision and range. This paper proposes a TensorCore GPU based
SVM algorithm and software system that is faster and more scalable
than state-of-the-art SVM solvers. It includes a fast, accurate low-
rank Gram matrix approximation that effectively utilizes the Ten-
sorCore in GPU and a primal-dual interior-point method to solve
the quadratic program with a fast and predictable convergence rate.
The random projection based Gram matrix approximation can be
substantially accelerated by TensorCore on GPU.

This exploration ends up with a tale of randomized numerical
linear algebra, convex optimization, and high performance com-
puting on Tensor Engines. Particularly, this paper suggests that
the emerging randomized numerical linear algebra algorithms and
Tensor Engines are synergistic in opening up exciting new applica-
tion areas that include statistical machine learning and the wider
scientific/engineering computing.
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1 INTRODUCTION

Driven by the ever expanding successful applications of large scale
deep neural networks, hardware vendors are starting to offer spe-
cialized accelerator for neural network training and inference which
we will call Tensor Engines in this paper. Among them are Tensor-
Core from NVIDIA on its latest Volta and Turing GPUs, Google’s
Tensor Processing Unit (TPU)!, and Intel’s Cooper Lake and Sap-
phire Rapids Xeon processors, as well as its Nervana Neural Net-
work Processor NNP-T 1000. These Tensor Engines are usually
characterized by limited precision and range, and extremely ef-
ficient matrix-matrix multiplication like operations. For example,
NVIDIA V100 boasts up to 125 “deep learning” teraFLOPS (125x10'2
floating point operation per second) [27], which is basically half
precision matrix multiplication accumulated in single precision.
Google’s TPU v3 claims 420 TeraFLOPS, also in doing half precision
matrix-matrix multiplication. In contrast, V100 single precision
peak performance is 14 TeraFLOPS, and double precision is 7Ter-
aFLOPS.

Support Vector Machines (SVMs) is a classic statistical machine
learning models for classification and regression. A survey con-
ducted by Kaggle in 2017 shows that 26% of the data science prac-
titioners use SVMs to solve their problems [33]. For datasets with
smaller feature space, SVMs can employ kernel trick to map low-
dimensional data to high-dimension space to obtain a non-linear
model, which leads to a large and non-separable quadratic opti-
mization problem with constraints. It involves a kernel matrix of
size n X n for a data-set with n training examples. However, at large
scale, it’s infeasible to store this extremely large kernel matrix in
memory and process it. There are two different approaches to deal
with this challenge: one is to decompose the optimization prob-
lem into a sequence of smaller ones and the other is to solve an
approximate optimization problem. The former approaches include
the very successful and widely used LIBSVM package [17], and the
latter approaches include deterministic low rank approximation of
the kernel matrix ([2, 12]), and randomized approximation of the
kernel matrix (Nystrom’s method[9] for example).

!https://cloud.google.com/tpu/


https://doi.org/10.1145/3392717.3392770
https://doi.org/10.1145/3392717.3392770
https://cloud.google.com/tpu/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3392717.3392770&domain=pdf&date_stamp=2020-06-29

ICS °20, June 29-July 2, 2020, Barcelona, Spain

Computationally, the SVM is a representative statistical machine
learning problem thus inherits many of their challenges on a large
scale. In this paper, we propose a novel randomized approximate
kernel SVM training technique called TensorSVM that is accurate,
scalable to large scale datasets and parallel processing units, and
efficient on GPU with TensorCore units. Compared to the state-
of-the-art approximate SVM solvers, TensorSVM is more accurate
in approximation which yields uncompromising prediction accu-
racy, and possesses better data locality that allows it to exploit
hierarchical memory system and specialized TensorCore on GPU.
Compared to non-approximate kernel SVM solvers such as LIB-
SVM [17]/ThunderSVM [34], TensorSVM exposes much more paral-
lelism, with lower asymptotic time complexity, and have predictable
convergence rate and execution time.

The contributions of this paper are:

e The demonstration of promising use of Tensor Engines
in Randomized Low Rank Approximation. We seem to
be the first to discover the synergy between Tensor Units and
Randomized Numerical Linear Algebra (RandNLA) [10]. This
work suggests a new direction of much wider exploitation
of emerging ubiquitous Tensor Engines outside of neural
networks.

¢ A novel approximate SVM training algorithm The pro-
posed TensorSVM algorithm combines randomized rank re-
vealing matrix factorization with advanced primal-dual inte-
rior point method which converges very fast (typically con-
verges in 100 iterations) and is insensitive to ill-conditioning.

e Empirical Evaluation and Software The TensorSVM has
been released as open-source software and it’s hosted at
github?. Our implementation shows that TensorSVM is 1.8x-
6.0x faster than state-of-the-art SVM solver on GPU with
uncompromising accuracy. For linear SVM, the speedup is
up to 125x without approximation. We also show that our
implementation achieves >50% roofline model bounds based
on arithmetic intensity.

The rest of this paper is organized as follows. Section 2 discusses
the essential background regarding SVMs and GPUs to handle the
challenges. Section 3 illustrates the details behind our low-rank
approximation and primal-dual interior-point method and it also
shows the reasoning of convergence, convergence rate, numerical
issues, and approximation accuracy. It also shows the practical im-
plementation side and performance and numerical optimizations.
Section 4 provides experimental results on the accuracy, perfor-
mance and various other characteristics of TensorSVM on bench-
mark data-sets. Section 5 concludes the paper, addresses limitations
of TensorSVM, and includes some possible future research direc-
tions.

2 BACKGROUNDS AND CHALLENGES

2.1 Support Vector Machine

Support vector machine (SVM) [3] is widely used as supervised
learning model for binary classification and regression analysis.
It tries to find a hyperplane that separates the positive and the
negative samples. The closest samples to the hyperplane are support
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vectors and the goal of SVM model training is to maximum the
distance between the hyperplane and the support vectors named
margin. The hyperplane H is characterized by a normal vector w
and a offset b that H = {x : wlx = b} with a maximum margin. It
could be modeled as a convex optimization problem as follows:

n
min f(w) = lew + Cz max{0,1 — yi(wai + D)}
w,b 2 =
Some data-sets are not linearly separable, thus kernel tricks are
introduced to map the data to a much higher or infinity dimension
so that the data-sets are more likely to be linearly separable in the
high dimensional space (Reproducing Kernel Hilbert Space, RKHS).
The original data points are transferred to a higher dimension with a
function ¢(-) and the only change to the primal problem is to replace
x; with @(x;). Fortunately, in the dual problem, we can get rid of the
inner product ¢(xi)T¢(xj) of potentially infinite dimension inner
product, and replace it with a kernel function x(x;, x;) that is easy
to evaluate. The dual problem is:

min, 9@) =5 D, vyjeiar(xix) = Y i (1)
i,j=1 i=1
subject to 0<a<Ci=1....,m (2)

m
Zaiyi =0 (3
i=1

The dual problem can be reshaped in a more compact way
1
g(a) = EaTQa —ela

where the labelled kernel matrix Q is a m X m matrix Q; ; =
yiyjx(xi, x;j). The dual problem also avoids the non-differentiability
of the hinge loss in the primal problem.

Note that if the m is very large(e.g. SUSY has 5 million records),
we will need 100TB to store Q in memory. Besides, the floating
point operations per second (FLOPS) to factorize Q is nearly m> ~
1.25 x 10%° (125 ExaFLOPs) to solve a single linear system, which
is only possible on a flagship supercomputer on the top500.org list.

2.2 Optimization Algorithms

As discussed in the previous subsection, the SVM training problem
is formulated as a quadratic program (1), with simple bounds in-
equality constraints (2) and a single linear equality constraint (3).
There are many optimization algorithms that apply to this problem;
however few of them can handle millions of variables and con-
straints efficiently. The most successful and popular one is a decom-
position based coordinate descent like algorithm called sequential
minimal optimization (SMO), and its subsequent improvements
incorporated in software package LIBSVM [1, 17] and Thunder-
SVM [34]. In its original scheme, SMO picks two variables and fix
the rest, and optimize the two-variable quadratic program using
an analytical solution. Which variables to pick is integral to the
success of this algorithm, and heuristics are often used to guide the
selection of the two variables according to second order informa-
tion. The resulting algorithm and software (LIBSVM/ThunderSVM)
is elegant, robust, and fast. However, there are two undesirable
properties of this line of algorithms: 1) it’s hard to parallelize and
scale, since SMO decomposes into a sequence of extremely small
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problems; 2) the convergence speed vary greatly and is very sen-
sitive to the data matrix conditioning and the hyperparameters
C,y.

Another broad class of algorithms—second order, or Newton like
algorithms—seem to be attractive at large scale, primarily due to
its quadratic local convergence rate (correct digits double in every
iteration) and often superlinear global convergence rate, and its
insensitivity to the conditioning of the quadratic program. Newton
like algorithms often converge in a few dozen iterations, but each
iteration involves a linear solve with the Gram matrix, therefore
entailing O(n®) operations. For n in the millions, O(n®) is ExaFlops
which is extremely expensive. However, if the Gram matrix is of
low rank k < n, then the linear system can be solved in O(nk?)
time, which is the motivation of approximating the Gram matrix
with a low rank matrix (see the subsection 3.1.1 for details).

The specific second order methods that solve quadratic program
with equality and inequality constraints are called barrier methods
or interior point methods. The basic idea is to turn the inequality
constraint into a soft-barrier with increasingly high penalty when
it approaches violation of the constraints. With the barrier, the pro-
gram is approximated as a quadratic program without constraints
which can be solved using Newton’s method. A more effective, and
easier to use the interior point method is called primal-dual interior
point method, which solves the perturbed KKT conditions using
Newton’s method. We will discuss the basics of the interior point
methods we use in more detail in subsection 2.4.

2.3 Half Precision Arithmetic and TensorCore
GPU

The dual problem with kernel tricks involves many matrix matrix
multiplications and if we use RBF(Radial Basis Function), we must
handle plenty of exponential function evaluations as well. Both
of the two kinds of calculations could be executed much faster
on Graphics Processing Unis(GPUs) than CPU. The GPU comes
with dedicated Special Function Units (SFU) that support common
transcendental functions with very high throughput [21].

Additionally, Nvidia recently introduced a specialized unit called
TensorCore from their Volta architecture and they claim that Ten-
sorCore could reach 120 TFLOPS for mixed half/single precision
matrix-matrix multiplication. Compared to singe/double precision,
Tensor Core matrix matrix multiplication is 7x/16x faster respec-
tively, at the cost of a potential loss of precision and robustness.
Apparently, TensorCore is driven by the need for neural network
training and inference which is quite tolerant of lower precision
matrix matrix multiplication, however its use outside of neural
networks is only emerging [4, 13, 16]. The key challenge is to strate-
gically use TensorCore low precision for the bulk of computations
that are not sensitive to numerical precision, while having critical
sections of computations running at high precision to safeguard
the accuracy and stability. Alternatively, one could employ some
kind of iterative refinement procedure to improve accuracy.

There are several methods to program the TensorCore. The eas-
iest way to use it is by calling the CUBLAS routine provided by
CUDA. One can also program TensorCore through the CUTLASS
template library or directly call the WMMA intrinsic which is more
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flexible. In this paper, we use TensorCore through the CUBLAS
library.

2.4 Mehrotra’s Predictor-Corrector Interior
Point Method

The specific second order method we use is one variant of primal-
dual interior point method due to Mehrotra [26], and we will call
Mebhrotra Predictor-Corrector (MPC) algorithm. Hereafter we will
rename the o to x and y to a for better conforming to standard
convex optimization literature convention [12, 37]. We rephrase
the nonlinear SVM (dual) problem as follows:

1
min ExTQx —elx
st. alx=0 )

0<x<c

The (perturbed) KKT conditions of this problem is

Xs =ope

(C-X)E = ope
alx=0 ®

—QOx+ay+s—&=—e
0<x<¢s>20,¢620 (6)

where x is the primal variable and X = diag(x), and y, s, £ are dual
variables, o € [0, 1] is the centering parameter, and yu called duality
gap. Primal-dual Interior Point Methods (PD-IPM) typically solves
the constrained non-linear KKT system using Newton’s method.
To avoid prematurely reaching the boundaries which significantly
limits later maneuver thus slowing convergence, the path-following
method solves a slightly perturbed version of the KKT condition.
The path-following algorithms solve successive perturbed KKT with
u — 0, thus following a central path while staying strictly in the
interior (¢ > x > 0,s > 0,& > 0). Mehrotra’s Predictor-Corrector
(MPC) algorithm is particularly effective and convenient in practice,
as it has a good heuristic for a parameter y. Each iteration in MPC
consists of two steps: a predictor step (small o) that aims for large
Newton step towards optimal solution, and a corrector step (large o)
that brings the iterate back to along the central path to allow longer
steps in subsequent iterations. Both steps solve a linear equation
derived by linearizing the perturbed KKT conditions (5):

-Q a I -1 Ax r1
T
a 0 0 0 Ay| |
s 0 x o ||as|TRES= @)
-E 0 0 C-X||A¢ T4

with different right hand side (RHS). For the predictor step, the RHS
is [~aTx;—e + Ox — ay — s + & —Xs; —(C — X)&]; for the corrector
step, the RHS is [—aTx; —e+Qx—ay—s+& —-Xs+opu—dXds;—(C—
X)E + op + dXdE], where the dX, ds, d¢ are the AX, As, A¢ from
the predictor step.

To solve the linear systems (7) in the predictor and correction
steps, we first use the last two (block) rows to eliminate As, A& from
the equations, and then eliminate Ax from the first two equations,
at which time we are left with one equation involving Ay.
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3 METHODS

The TensorSVM consists of two parts: the low rank approximation
and the interior point method to solve the approximate quadratic
program.

3.1 Algorithms

There are two phases of the TensorSVM algorithm: phase I com-
putes a low rank approximation for the kernel matrix G using
a method adapted from randomized rank-revealing QR factoriza-
tion [25], and phase II solves the quadratic program from the dual
SVM optimization problem using the approximated kernel matrix
and primal-dual interior point method. We describe the two phases
in sequence.

3.1.1 Efficient and Accurate Low Rank Approximation of the Gram
Matrix on GPU.

When training on large scale datasets the kernel matrix G € R"*"
can be of tremendous size and renders solving linear equation with
it prohibitively expensive. Fortunately for a lot of kernel functions
and parameters, the kernel matrix can be very well approximated
by a low rank matrix, as it has rapidly decaying eigenvalues [32,
36]. Our low rank approximate is based on the random projection
method [25]. The idea is that we want to find an orthonormal matrix
0 € R™ with the small number k columns such that the range of
Q covers much of range of the matrix G we wish to approximate:
range(Q) ~ range(G). It turns out that for a matrix Q € R™k with
1.1.d random Gaussian entries with mean 0 and standard deviation 1,
the product range(GQ) ~ range(G) in the expectation, and can be
enhanced with extremely low variance with power refinement and
slight over-sampling. The trick is that GQ has a smaller size than G
so we can find an orthonormal basis from this smaller matrix GQ
faster: Q = ortho(GQ). In practice, a QR factorization can be used
to find an orthonormal basis of GQ. See Algorithm 1 for our adapted
algorithm which is simplified [25], and a pictorial illustration in
Figure 1. It’s interesting to note that almost all of the operations
are level 3 BLAS which can be executed in the maximum speed of
GPU in terms of FLOPs per second.

Algorithm 1 Phase I: low rank approximation (LRA) of Gram
matrix using randomized Gaussian projection

Goal: Given a Gram matrix G € R™ " (symmetric positive definite) and a
target rank k < n, find a low rank approximator U € R™*¥ such that
G~UUT.

Step 1: Generate a Gaussian random matrix Q €
Step 2: Compute matrix multiplication Y = GQ.
Step 3: Find the orthonormal basis of range(Y): Q = ortho(Y), by taking
the Q factor of QR factorization of Y = QR

Step 4: Form Y = GQ

Step 5: Form C = Q7Y

Step 6: Eigen-decompose C = XZX7;

Step 7: Form the low rank approximator U = QX s

RnxkA

3.1.2  Interior Point Method.
The interior point method is a second order optimization algorithm
to solve convex optimization problems with constraints.

The dual problem of the non-linear SVM is a constrained qua-
dratic program for which the Newton method based dual-primal
interior point method is highly effective. The structure we used is
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Figure 1: An illustration of the randomized low rank approxima-
tion of Algorithm 1. The circled number indicates the step in the
algorithm.

similar in [12] but with two main differences: 1) we use the phase
I for the low rank approximation; 2) we use Sherman-Morrison-
Woodbury formula as linear solver. In contrast, Fine et. al [12]
combines the low-rank approximation and linear solver with a sin-
gle partial factored Cholesky factorization which is more stable
numerically but has higher approximation error than ours. The
overall optimization algorithm is the predictor-corrector interior-
point method attributed to Mehrotra [26] and we used a variant
that is close to [37] (Chapter 10, Algorithm MPC). We describe the
full algorithm in Algorithm 2.

3.1.3  Various Algorithmic Issues. Linear SVM training: For a spe-
cial case, the TensorSVM can also train linear SVM models very
efficiently without approximation, if the number feature is not large
(<2000). It’s sufficient to note that in the linear SVM model, the
Gram matrix Q is the product of the data matrix, Q = ZZ7, thus
already a low rank form suitable as an input of Algorithm 2.

Loss of symmetry and positive semi-definiteness: When the rank is
set to be too high, the low rank approximation may generate a non-
positive definite and non-symmetric matrix C, thus failing step 7 in
Algorithm 1 and Figure 1, where the square roots of the eigenvalues
of C are taken. One mitigation is to rerun the training program
with a lower k. To mitigate the loss of symmetry, we asymmetric
C: C = (C +CT)/2. For the loss of positive semi-definiteness, we
filter out the negative eigenvalues in step 7, taking them to be 0. In
practice, the negative eigenvalues are very small, and it’s likely to
be perturbed zero eigenvalues caused by the randomization process
and floating point roundoff errors.
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Algorithm 2 Phase II: Mehrotra’s primal-dual interior point
method on the quadratic program from dual SVM problem. Nota-
tion: O stands for Hadamard product, or element wise vector/matrix
product; X = diag(x), S = diag(s)

Goal: Given a symmetric positive semi-definite matrix A € R™*", vector
a € R™, and scalar C, this algorithm finds the minimizer x* of the
quadratic form

1
ExTQx -xTe
subject to constraints

alx =o, 0<x; <C,fori=1,...,n

Initialize the primal variables x € R” and dual variables
yeR,s eR", & eR".
While the KKT conditions are not satisfied, do
Step 0: Compute: iz = (xTs + (C — x)T &)/(2n) and
dx Ox—-ya—-s+&-1

dy| —alx
ds| ™ -s0Ox
dé —fo(C-x)

Step 1: (Predictor) Solve the Newton update direction
[Axy, Ayq, Asy, Aép] from linear system using Algorithm 3

-Q a I -I Axy dx
al’ 0 o 0 Ayy dy
0 X 0 Asi |~ |ds

S
-E 0 0 C-X||A4 d&¢

Step 2: Find a large step size a such that the new updates will still be
within the constraints: 0 < x + aAx; < C, s+ alAs; >0, &+ aA& > 0.
Step 3: Compute the centering parameter o =

(x + aAx))T (s + aAsy) + (C — x — aAx))T (€ + aA&)) }
xTs+(C-x)T¢
Step 4: (Corrector) Solve the Newton update direction
[Axy, Ay, Asy, A&,] from linear system using Algorithm 3

-Q a I -1 Axy 0
al' 0 o 0 Ayz| 0
S 0 X 0 Asy| " |op-dx ods
-E 0 0 C-X]||A& op+dx ©dé

Step 5: Compute

[Ax, Ay, As, AE] = [Axy, Ayy, Asy, A&r] + [Axz, Ayz, Asy, A&y, and find
a large step size a such that the new updates will still be within the
constraints: 0 < x + aAx < C,s+ als >0, & + aA&é > 0.

Step 6: Update the primal and dual variables:
x=x+alx,s=s+als, & =&+ alé

End Loop

Algorithm 3 Linear solve for Newton step linear system (7)

Require: O = ZZT e R™", Z e R™* a e R",x e R",s eR", ¢ €
R™, C € R, right hand side [r1, r2, r3, r4], X = diag(x).

Ensure: Solution to (7) overwrites [r1, r2, r3, r4]
1 r5=r1-r3+(C-X)"'r4
2 b =(ZZ"T + D)"'r5 {For this and following inverse (ZZT + D)1b see
Algorithm 4}

cr6=r2+a’b

cr2=r6/aT(zZT + D) 'a

rl=ar2-r5

cr1=ZZT + D) 1r1

r3=X1r3-sorl)

s ra=(C-X)yYra+&0r1)

® NG Ww

Algorithm 4 Sherman-Woodbury-Morrison formula to solve linear
system (ZZT + D)~'b, where Z € R™ is tall skinny and D is
diagonal.

1: Return D716 — D' Z(I1 + ZT D' Z)"' ZT Db (evaluate from right
to left).

3.2 Algorithmic Complexity and Performance
Model

The execution time of TensorSVM is quite predictable, in contrast
to the highly unpredictable ThunderSVM/LIBSVM. The reason is
the observed superlinear convergence rate of interior point method,
which in practice never exceeds 100 iterations. In this subsection, we
characterize the time complexity and execution rate of TensorSVM.

The low rank approximation phase (Algorithm 1 and Figure 1)
consists of the following operations: 1) (step 1&4) generating the
Gram matrix G € R™" where G;; = y;y; exp(—y||x; — xj||2) and
x; € R i=1,...,nare training samples; 2) (step 2,4,7) matrix
multiplication; 3) (step 3) QR factorization; 4) (step 6) eigenvalue
decomposition. Add them together we get the time complexity of
the low rank approximation:

Ty = O(n?d) + O(n%k) + O(nk?) + O(k>)

The MPC phase (Algorithm 2) are iterative in nature but for
all practical purposes the number of iterations to convergence is
constant (<100) due to its superlinear convergence rate. In each
iteration, step 1 and step 4 that solve a linear system is the domi-
nant computations, which in turn is dominated by the Sherman-
Woodbury-Morrison formula in Algorithm 4. The time complexity
is, therefore:

Ty = O(nk?)
Adding this together we get the asymptotic time complexity:
T = 0(n?(d + k)) + O(nk?) + O(k%)

Note that all the dominant computations are dense matrix-matrix
multiplications or matrix factorization thus can be expected to be
executed at a very high rate on GPU.

3.3 Streaming Computations

Since the matrices involved is completely beyond the capacity GPU
memory and sometimes the host CPU memory, the TensorSVM
takes advantage of the pass-efficient algorithms and implement
the TensorSVM with out-of-core processing, on-demand genera-
tion of the Kernel matrix, and overlapping communication with
computation.

Out of core implicit Kernel Matrix Multiplication To support train-
ing on millions of samples, the lack of GPU device memory must
be addressed because not only the Gram matrix (size n X n) cannot
fit into GPU memory, the low rank factor U alone may not fit. As
such TensorSVM supports out of GPU memory (out of core) pro-
cessing by streaming the matrices to GPU in chunks. For example,
the step 1 and 4 in Algorithm 1 and Figure 1 invoke kernel matrix
multiplication. We divide the kernel matrix into 100,000 by 100,000
chunks and stream them to the GPU. The Gram matrix does not
even fit in CPU memory so we will re-generate the kernel matrix
on-the-fly whenever it is in the pipeline to be streamed to the GPU.
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Figure 2: Communication Avoidance QR: two steps version

Out of core QR factorization. Due to the limitation of GPU mem-
ory, processing whole QR factorization for matrix A = QR is not
possible if the size of the matrix A is too large. In this paper, we use
a QR algorithm named Communication Avoidance QR(CA-QR) [6]
which allows us to divide the matrix into smaller blocks and stream
them to GPU for processing, and then reassemble them to complete
the QR factorization. Figure 2 gives an intuitive explanation on
CA-QR. There are 5 steps indicated by the number over the equality
sign. In the D) step, we divide a tall matrix A into 4 smaller matrices
(still tall, more rows than columns), and QR factorize them inde-
pendently. In step ) we stack the R factors vertically. Note that
the number of rows of the R factors is less than the number of rows
of the original A. In step (3), we factorize the vertically stacked Rs
(potentially carry this process recursively). In 3, we do 4 matrix-
matrix multiplications for the 4 corresponding Q factors. In G) we
reinterpret the result as the QR factors of the original A. The reason
Q is orthogonal, is that in step () the 4 matrix-matrix multiplication
is equivalent to the product of two orthogonal matrices (second
line), and therefore is orthogonal.

Performing QR factorization on GPU becomes possible through
these steps. We first copy A; from CPU to GPU and perform QR
factorization on A; to get Q1 and Ry. Then we send Qq back to CPU
memory and save R; on the device and we recursively factorize
other blocks, finally, we have Ry to R4 on the device. Afterwards, we
factorize this part on GPU and generate Q21, Q22, Q23, Q24. Similarly,
we also use out of core matrix multiplication in step @. Note that
we create two buffers for moving data and computation respectively
to overlap the data movement between CPU and GPU.

3.4 TensorCore Acceleration

The emergence of TensorCore in NVIDIA GPUs and other ten-
sor engines in accelerators or CPUs provides tremendous poten-
tial to greatly accelerate numerical applications with high energy
efficiency. However, outside of applications of neural networks,
effective and robust use of TensorCores is only beginning. Two
challenges must be properly handled: 1) how to provide sufficient
data locality to allow TensorCore to accelerate meaningfully? 2)
how to mitigate the loss of accuracy and stability due to the limited
precision/range in the 16 bits floating point format? In this sub-
section, we consider carefully the use of TensorCore to accelerate
TensorSVM. We show that the low rank approximation (phase I)
is conducive to TensorCore acceleration while the second order
optimization (phase II) is susceptible to numerical instability.
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TensorCore is accurate and stable for low rank approximation
(phase I, Algorithm 1). The reasons are three folds. First, the Gram
matrix G is well scaled by construction, and the right factors (ran-
dom Q, ortho-normal Q) are well conditioned and scaled. This
ensures that the matrix multiplication is unlikely to have overflow
which results in co or completely incorrect result. Second, the low
rank approximation error is dominated by the truncation due to
the low rank constraint. Compared to a typical truncation error,
the roundoff errors are insignificant and thus can be ignored. Third,
some potential instability is handled at low rank approximatino
algorithm level as discussed in section 3.1.3. To give an example,
let’s directly examine the low rank approximation error of Algo-
rithm 1 with and without TensorCore in figure 3. From the figure,
we can see the error of TensorCore Randomized LRA closely tracks
the error of single precision Randomized LRA up to around relative
error level 107* and then the TensorCore LRA error stops improv-
ing. This is to be expected because the half precision arithmetic
TensorCore uses has unit roundoff error 9.8 x 1074, It seems that

e
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Figure 3: The Low Rank Approximation (LRA) error of the kernel
matrix of the first 4096 data points from the ijcnnl dataset. First
two lines are using Algorithm 1 with and without TensorCore; the
last line is the optimal low rank approximation given by SVD.

10~ level of low rank approximation error is quite adequate for
the SVM, as supported by the observations in Section 4, where
enabling TensorCore in phase I maintains prediction accuracy. To
summarize, our particular low rank approximation is conducive to
TensorCore acceleration and resistant to instability caused by low
precision and range of FP16.

TensorCore is unstable in Interior Point Method linear solver (phase
II). Blindly applying TensorCore to all matrix-matrix multiplica-
tion may quickly lead to instability. In fact, in the second phase of
TensorSVM, divergence results (algorithm 4). The reason is that as
the iteration in phase II goes on, the linear system (I + ZTD™12)
becomes increasingly ill-conditioned (x — oo at the solution);
moreover the SWM based algorithm exhibits excellent data local-
ity but is not backward stable. When D becomes ill-conditioned,
computing ZT D™1Z on TensorCore will deviate from the solution
(2ZT +D)™'b so much that the IPM iteration almost always diverge.
To summarize, unless the strongly backward stable algorithm is
used, TensorCore will likely lead to cause instability. More research
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is required to exploit TensorCore in phase II, which this paper does
not explore.

3.5 Comparison to Other SVM Solvers and Low
Rank Approximators

As TensorSVM consists of both innovations from algorithms and
parallel computing, the performance advantage of TensorSVM in
comparison with other approximate/non-approximate solvers may
come from contributions from both. However, the two contribut-
ing aspects (algorithmic and technical) are naturally intertwined,
because the algorithms are designed to better exploit the underly-
ing architecture we are targeting (multiple GPU accelerators with
neural engine units), and the technical implementation takes advan-
tage of the opportunities to accelerate and parallelize. Nevertheless,
we attempt to compare TensorSVM to other non-approximate and
approximate SVM solvers with vastly different algorithms and im-
plementation and comment on the performance aspect.

Low Rank Approximation. Traditional deterministic low rank ap-
proximation such as Singular Value Decomposition and truncated
rank-revealing QR factorization are inefficient in our case because:
1) they are not pass-efficient, meaning that they require O(n) passes
over the Gram matrix which is very slow when the matrix does not
fit GPU memory or even the CPU memory; 2) only half of the arith-
metic is spent on matrix-matrix multiplication so that TensorCore
can at most accelerate them by 1.75x. A more suitable deterministic
low rank approximation is based on incomplete symmetric pivoted
Cholesky factorization [2, 12]. This method features low complexity
O(nkz) and can be made pass-efficient, however, it suffers from low
data locality and low approximation accuracy (see Table 4 PSVM
column). On the other hand, randomized low rank approximation
including Nystrom’s method [9, 38], and the Algorithm 1 are more
promising in that they are pass-efficient and arithmetic intensive
to benefit from TensorCore. Nystrom’s method randomly sample
k columns of the Gram matrix to form C € R™¥, and approxi-
mate the Gram matrix G with G ~ CW*CT . Algorithm 1 randomly
projects onto a subspace of range of G, in a more similar fashion as
randomized SVD or QR [24]. It seems that the Nystrom’s method
approximation accuracy is inferior than Algorithm 1; see Table 4
LLSVM column. To summarize, the proposed Algorithm 1 is accu-
rate even with small rank, pass-efficient (only 2 passes), and can be
substantially accelerated by Tensor Units.

Structured Low Rank Linear Solver. In the interior point method
with low rank matrix, each iteration involves solving a dense struc-
tured low rank linear system D + ZZT where D is diagonal and
Z € R™K_ There are two efficient algorithms that solve such
system in O(nk?) time rather than O(n®): Sherman-Woodbury-
Morrison (SWM) inversion formula in Algorithm 4, and factored
form Cholesky (FFC) factorization [12]. The former has excellent
data locality but sensitive to ill-conditioning, whereas the latter has
poor data locality but is stable. We chose the former as structured
low rank linear solver for its much better speed on GPU and avoid
the instability by terminating the optimization when the matrix D
becomes too ill-conditioned, and fine tuning the initial guess.

Numerical Optimization Algorithms: Second Order vs. First Or-
der. To make use of the Tensor Units the algorithm must be of
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very high arithmetic intensity, otherwise, the operations are mem-
ory bandwidth bound. Furthermore, the algorithm must be rich in
matrix-matrix multiplication like operations (the only operations
supported by TensorCore). First-order optimization methods (gra-
dient descent, coordinate descent, etc) operate with the gradient
which means vector-vector operations hence low arithmetic inten-
sity. Therefore LIBSVM/ThunderSVM does not benefit from the
presence of TensorCore. Furthermore, first order methods can con-
verge really slow depending on the condition of the optimization
problem, which in turn depends on the input data and hyperpa-
rameters C, y. On the other hand, the second order Interior Point
Method used in TensorSVM is observed to have superlinear con-
vergence rate and converge in 100 iterations in all cases we tested.
For example, see figure 4 for comparison on the same data set with
different hyperparameters. From the figure we can see that Ten-
sorSVM execution time is insensitive to the different conditioning
(k(G)) induced by the hyperparameter, whereas the execution time
of ThunderSVM can vary by more than 100 times.

(2) TensorSVM (b) ThunderSVM

Figure 4: Rough grid search performance comparison for Ten-
sorSVM and ThunderSVM with C = [278,27%,20, 2% 28] and Yy =
[278, 274,20, 24, 28]. Time(s) is plotted in log scale with base 2.

4 EXPERIMENTAL EVALUATION

In this section, we conduct a comprehensive empirical evaluation
of the speed and accuracy of TensorSVM, in comparison with other
state-of-the-art SVM solvers. We investigate the characteristics
of our algorithmic design and implementation using the roofline
model to evaluate the efficiency of TensorSVM in exploiting the
GPU hardware. We also empirically evaluate the impact of Tensor-
Core on the accuracy and speed aspects of TensorCore.

The experiments were performed on a typical HPC cluster. The
CPU on the machine is 24 cores Intel Xeon E5-2680v4(2.40GHZ) and
the GPU is Nvidia Volta V100 (PCle) with CUDA version 10.0.130.
The operating system is Linux version 3.10.0-957.12.2.el7.x86_64
and the compiler version is GCC 6.4.0. We implemented the Ten-
sorSVM in C++ with CUDA. We make use of cuBLAS/cuSOLVER
and MKL 2017.3.196 for basic linear algebra operations. Our source
code runs 2663 lines long.

The dataset we test against are listed in table 1. We obtain all
our datasets from the LIBSVM Dataset repository>. For the Epsilon
dataset we used the training/testing data split from this source. For

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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dataset # training samples  # testing samples  # features
mushrooms 7,200 924 112
w8a 42,240 7,509 300
ijennl 81,920 9,781 22
covtype 522,874 58,138 54
SUSY 4,608,000 392,000 18
Epsilon 400,000 100,000 2,000
Higgs 10,000,000 1,000,000 28

Table 1: Data set statistics.

Figure 5: Performance and Accuracy of three state-of-the art SVM
solvers on three large scale datasets. The execution time is nor-
malized against ThunderSVM and also annotated along the bars.
The percentage annotation refers the prediction accuracy on test-
ing data, using the best model obtained from the same grid search
on hyperparameters.

other datasets that do not already have the split, we randomly split
the datasets into training and testing sets.

4.1 Speed and Accuracy

In this section, we pick three large datasets in the LIBSVM datasets
repository to test the speed and accuracy of the proposed Ten-
sorSVM. To put the performance and accuracy in perspective, we
consider LIBSVM to be the gold standard in terms of accuracy,
and ThunderSVM as the baseline for performance. In fact, Thun-
derSVM implements a similar algorithm as LIBSVM on GPU with
more than 100x speedup, hence we choose ThunderSVM as the
baseline for accuracy as well. In fact, ThunderSVM is the fastest
SVM solver to achieve near optimal accuracy in all cases we have
tested. Another interesting baseline is the PSVM which is closer to
TensorSVM in terms of algorithm. PSVM is a distributed memory
CPU approximate SVM solver with deterministic low rank approxi-
mation to kernel matrix using incomplete Cholesky factorization.
In this section we use 512 CPU cores for PSVM.

From figure 5 we can see that for these three large scale datasets,
the TensorSVM is 1.8x/6.0x/3.5x faster than ThunderSVM with
almost the same optimal accuracy. On the other hand, PSVM on
512 cores failed to complete in 9 hours for SUSY, manage to con-
verge in faster than ThunderSVM on Epsilon with significantly
inferior accuracy (83.66% vs. 86%), and converges 12x slower than
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ThunderSVM on covtype. These set of experiments seem to sug-
gest that TensorSVM is the fastest among the three solvers, with
uncompromising prediction accuracy due to its accurate low rank
approximation.

4.2 The Impact of TensorCore and Rank

To reveal the impact of TensorCore on the performance and accu-
racy of TensorSVM, we conduct further experiments on the Epsilon
and in figure 6, by comparing TensorSVM with TensorCore enabled
and disabled. To provide reference we include the performance and
accuracy of ThunderSVM as a baseline. From figure 6a we can see
that enabling TensorCore substantially accelerates the TensorSVM,
specifically the low rank approximation phase I. Also, we can see
that enabling TensorCore does not reduce the prediction accuracy,
confirming the analysis in section 3.4. Furthermore, increasing
the rank generally increases the low rank approximation accuracy
which subsequently increases the prediction accuracy, at the cost
of more computations. To summarize, the TensorCore is able to
accelerate TensorSVM solver significantly without compromising
its accuracy.

(a) Epsilon, TensorSVM(C = 0.01, y = 0.06), ThunderSVM(C = 0.01, y = 1)

Figure 6: The training time and prediction accuracy (annotated
by the numbers beside the points) differences between Ten-
sorSVM(induding enabling TensorCore and disabling TensorCore)
and ThunderSVM for epsilon

4.3 The Empirical Time Complexity
Comparison between TensorSVM and
ThunderSVM

Theoretically, the time complexity of TensorSVM is O(n?k). For
ThunderSVM, it is unclear because the number of iterations depend
on datasets and hyperparameters. So we conduct an empirical study
on the asymptotic time complexity of both. The Y-axis in Figure 7
is a log scale of total training time for SUSY and the X-axis is the
number of training examples. ThunderSVM shows a steeper curve
than TensorSVM which is consistent with our assumption. Roughly,
the slope of ThunderSVM is 2.5 while TensorSVM is 2 which in-
dicates that TensorSVM has a better asymptotic time complexity -
(O(n?) vs. O(n?+)). Therefore, it suggests that TensorSVM is much
more scalable to large datasets.
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Figure 7: log-log plot of training time comparison for ThunderSVM
and TensorSVM with different size of training examples(log base is
2). The slope indicates the power of n in time complexity.

4.4 Roofline Model and Rate of Execution

To understand the detailed execution profile of TensorSVM, we
study the three most time consuming components of the Ten-
sorSVM training: Kernel Generation (KerGen) and Low Rank Ap-
proximation (LRA) in phase I, and Linear Solve (LinSolve) in phase
IL; see table 2. We calculate the number of FLOPs in each component
and its arithmetic intensity, and from which we derive the peak
execution rate bounded by the roofline model [35]. If the arithmetic
intensity (FLOP/Byte) is larger than the critical intensity we cate-
gorize the component as compute bound; otherwise, as memory
bandwidth bound. Either way, we derive the peak execution rate
based on the arithmetic intensity and roofline model. The actual
execution rate is measured. From table 2 we see that our implemen-
tation achieved more than 50% of peak execution rate overall, which
means that a better implementation cannot improve our speed by
2x. We also note that we achieved up to 48.7 TFLOPS in the LRA
operation using TensorCore.

4.5 Non-approximate Linear SVM

It turns out that TensorSVM is also an extremely fast (and the fastest
as we know) linear SVM training on datasets with millions of data
samples with relatively few features. In this case the kernel matrix
(linear kernel XXT is already the product of low rank factors so
can directly feed into Algorithm 2. Note that in this mode Ten-
sorSVM is non-approximate, and should give the same results as
LIBSVM/ThunderSVM; see Table 3. From the table, we can see that
TensorSVM is 55x-125x faster than ThunderSVM for the large scale
datasets and parameters we set.

4.6 Accuracy Validation and Comparison with
Other Approximate SVM Tools
To validate that our low rank approximation doesn’t compromise

prediction accuracy on a broader set of benchmarks, we add three
more testing data-set with a smaller size in Table 4. In the table, we
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also include other approximate SVM solvers, such as PSVM, DC-
SVM¢, and LLSVM °, and TensorSVM gives the most consistent and
accurate models. Furthermore, we also compare the performance
of them on the largest three datasets shown in table 5. We see
that TensorSVM is the fastest by a fairly large margin in most
cases, except for LLSVM in SUSY. However, LLSVM is inaccurate
as compared to TensorSVM (accuracy 72% vs. 79%). We see that
TensorSVM is able to deliver both great speed and optimal accuracy
consistently.

5 RELATED WORK

PSVM [2] is a MPI based parallel implementation of low rank Gram
matrix approximation proposed in [12]. It is perhaps the closest to
this paper in that they both try to approximate the Gram matrix
using a low rank approximate to reduce computation burden, and
also use primal dual interior point method for solving the approx-
imated quadratic program. The most salient difference is the low
rank approximation algorithm and the linear solver in the Newton
steps. In PSVM, the low-rank approximation is accomplished by
a pivoted incomplete Cholesky factorization in factored form. It
boasts amazing time complexity O(nk?) just by looking at all ele-
ments in the Gram matrix once will incur O(n?) complexity and
numerical robustness in the Newton linear solver, because of the
incomplete Cholesky factorization. However, PSVM has two major
disadvantage compared to TensorSVM: 1) the low rank approxima-
tion quality is significantly lower, thus usually requiring a much
larger rank k to obtain enough accuracy to get decent prediction
accuracy; 2) the operation in the incomplete Cholesky factorization
with pivoting is essentially BLAS2 operation with low arithmetic
intensity, which can only be executed at less than 1% of the rate
as TensorCore on GPU. We are not aware of GPU implementa-
tions of PSVM algorithm. It'll be interesting to further research the
prospect of PSVM on GPU and how it compares with TensorSVM
and ThunderSVM.

As large scale kernel SVM is difficult to train, various approxima-
tion methods are developed to make the training time manageable,
usually at the cost of prediction accuracy. One approach that is close
to ours is to approximate the Gram matrix with some low-rank one;
see Nystrom’s method for approximating Gram Matrix [9], Mem-
ory efficient Kernel Approximation (MEKA) [31], QR-SVM (Jaas
2017) [5] for L2 SVM (from the standpoint of optimization, an easier
problem than L1 SVM that we use), and LLSVM [38] which uses
low rank approximation to approximate a non-linear SVM with a
linear SVM similar to Nystrom’s method. Randomized approxima-
tion of the Gram matrix: LLSVM: Nystrom method for nonlinear
SVM. FastFood: random Fourier features to approximate the ker-
nel function. See [18] for a comprehensive comparison between
many approximate SVM training algorithms. Note that the best
of them are usually 10-20x faster than LIBSVM with slightly less
prediction accuracy. In contrast, the TensorSVM can often achieve
400x speedup than LIBSVM for kernel SVM training and more than
10000x in linear SVM training (we did not try LIBSVM because it
takes too long; our calculation is based on that TensorSVM can be

*https://rdrr.io/github/hetong007/SwarmSVM/man/dcSVM.html
Shttps://astro.temple.edu/ tuc17157/budgetedSVM/algorithms.html
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Procedure # FLOP Exec. Rate Peak Rate Efficiency Bottleneck Proportion
KerGen 4n®  382.54GFLOPS  659GFLOPS 58.0% Memory Bandwidth 9.2%
epsilon  LRA 2n?d + 2n’k  48.7TFLOPS 92.1TFLOPS 52.9% Compute 82.9%
LinSolve  # iters xnk? 1.28TFLOPS  6.4TFLOPS 20% Compute 7.9%
KerGen 4n®*  386.07GFLOPS  659GFLOPS 58.6% Memory Bandwidth 33.1%
SUSY  LRA 2n*d +2n*k  36.47TFLOPS  45.1TFLOPS 80% Memory Bandwidth 66.2%
LinSolve # iters xnk? 0.879TFLOPS  6.4TFLOPS 13.7% Compute 0.7%
KerGen 4n®>  383.85GFLOPS  659GFLOPS 58.2% Memory Bandwidth 31.6%
covtype LRA 2n?d + 2n’k  28.32TFLOPS  51.1TFLOPS 55.5% Memory Bandwidth 63.2%
LinSolve  #iters xnk?  0.326TFLOPS  6.4TFLOPS 5.1% Compute 5.2%
Table 2: Main components of TensorSVM and their efficiency.
TensorSVM ThunderSVM function of L1-SVM. Lee and Roth [20] described a distributed box-
dataset  time(s) accurac time(s) accuracy speedu constrained quadratic optimization for the dual linear SVM by using
Y Y °p P a block-diagonal approximation of the Hessian. ThunderSVM [34]
covtype 25 76% 1123 76% 44x . . - . . o .
is a new improved implementation of LibSVM that utilizes multiple
SUSY 211 78.6% 26400 78.8% 125x .. .
. cores and GPUs to accelerate the training and inference. The sup-
Higgs 526 61.9% >43200 ? >82x

Table 3: Linear SVM performance and prediction accuracy for Ten-
sorSVM and ThunderSVM with hyperparameter C = 32

Dataset TensorSVM PSVM DC-SVM LLSVM
mushrooms 100% 100% 100% 100%
w8a 100% 97.17% 99.45% 97.66%
ijennl 98.67% 99.43% 99.73% 97.67%
covtype 97.75% 97.33% 97.15% 66.34%
epsilon 86.01% 83.66% ? 82.62%
SUSY 78.91% ? ? 72.42%

Table 4: Accuracy validation and comparison with PSVM, DC-SVM
and LLSVM. The ? fields represent termination due to 9 hours time
limit.

Dataset TensorSVM PSVM DC-SVM LLSVM
covtype 22s 921s 13750s 505s
epsilon 57s 153s  >9 hours 2002s
SUSY 1120s  >9 hours >9 hours 603s

Table 5: Performance comparison with PSVM, DC-SVM and LLSVM
on large datasets.

more than 100x faster than ThunderSVM, which in turn is consis-
tently more than 100x faster than LIBSVM).
Non-approximation SVM and software: LIBSVM [1] is prob-
ably the most popular software package that supports linear and
non-linear L1-SVM training. The optimization method used is a
highly customized variant of coordinate gradient descent method
(similar to sequential minimal optimization, SMO [28]). LIBLIN-
EAR [11] include a trust region Newton method for TRON [22] for
L2-SVM only because of the indifferentiability of the hinge loss

ported models are the same as LibSVM; the optimization technique
used is a variant of the popular SMO. BudgetedSVM [7] is a toolbox
in C++ that implements four algorithms for training non-linear clas-
sifier for Large-scale data: Adaptive Multi-hyperplane Machines
(AMM) (trained by stochastic gradient descent), LLSVM [38] (dual
coordinate descent), Budgeted Stochastic Gradient Descent (BSGD),
and Primal Estimated sub-Gradient Solver for SVM (Pegasos) [30]
SVM-QP [29] proposes and implements an active set algorithm to
solve the quadratic programming problem in the kernel SVM dual
problem.

NVIDIA introduced TensorCore technology with its Volta ar-
chitecture [27] in 2017. Resources about NVIDIA TensorCore in-
clude detailed micro-architecture analysis and benchmarking [19],
an early report on the programmability, performance, and preci-
sion [23]. In [4] important parallel primitives reduction and scan
are accelerated with TensorCore. In [13-15] TensorCore was used
for accelerating linear system solvers in the framework of hybrid
CPU/GPU linear algebra package MAGMA [8]. There are numerous
use cases of half precision or even lower precision in the application
of neural networks.

6 CONCLUSION

In this paper, we set out to make use of the emerging Tensor En-
gines to accelerate statistical machine learning. In this endeavor, we
discovered the great synergy between Tensor Units and Random-
ized Low Rank Approximation where the limited precision/range of
half precision format are well tolerated and compensated. Together
with an interior point method, we propose a novel approximate
non-linear SVM solver which appears to be consistently and consid-
erably faster and/or accurate than the well researched state-of-the-
art. We conducted detailed experiments to validate the efficiency
and accuracy of the proposed system. The findings of the paper
should not be limited in the SVM solver. Two future directions
seem to be profitable: 1) extending the highly efficient kernel ma-
trix approximation on Tensor Units to other kernel machines such
as Kernel Logistic Regression, and Gaussian Process. 2) extending
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and refining the use the Tensor Units on randomized numerical lin-
ear algebra to achieve great speedup that deterministic algorithms
cannot.
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