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Abstract

Fueled by the surge of ever expanding successful applications
of deep neural networks and the great computational power de-
manded, modern computer processors and accelerators are begin-
ning to offer half precision floating point arithmetic support, and
special units (neural engines) such as NVIDIA TensorCore on GPU
and Google Tensor Processing Unit (TPU) to accelerate the training
and prediction of deep neural networks. It remains unclear how neu-
ral engines can be profitably used in applications other than neural
networks. In this paper we present an endeavor of accelerating and
stabilizing a fundamental matrix factorization on neural engines—
the QR factorization—which may open doors to much wider rel-
evance to scientific, engineering, and data science. We show that
traditional Householder QR algorithms and implementations do
not have the necessary data locality, parallelism, accuracy, and ro-
bustness on neural engines which are characterized by extreme
speed and low precision/range.

We demonstrate that neural engines can be effectively used to
accelerate matrix computations (QR 3.0x-14.6x speedup compared
to cuSOLVER, reaching up to 36.6TFLOPS); however different al-
gorithms (recursive Gram-Schmidt) are needed to expose more
locality and parallelism, even at the cost of increased computations.
Moreover, scaling, iterative refinement, and other safeguarding pro-
cedures are also needed to regain accuracy and avoid overflowing.
Our experience seems to suggest that presently with neural en-
gines the matrix factorizations (QR, LU, Cholesky) are best to be
co-designed with its applications (linear solver, least square, orthog-
onalization, SVD, etc) to achieve high performance and adequate
accuracy and reliability.

CCS Concepts

+ Mathematics of computing — Solvers; Mathematical soft-
ware performance; Computations on matrices; « Theory of
computation — Parallel algorithms; Preconditioning; « Com-
puter systems organization — Neural networks.
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1 Introduction

Driven by the need to train large scale deep neural networks,
there’s been a tidal wave of the specialized low precision matrix
matrix multiplication units. Among them are TensorCore from
NVIDIA on its Volta and Turing architecture, Google’s Tensor Pro-
cessing Unit (TPU)l, and Intel’s latest FPGA, CPU, and Nervana
Neural Processors. These neural engines are usually characterized
by the support of lower precision arithmetic (such as 16-bit floating
point format), and extremely efficient matrix-matrix multiplica-
tion. For example, NVIDIA V100 boasts up to 120 “deep learning”
TeraFLOPS (120 x 10!2 floating point operation per second) [32],
which is half precision matrix multiplication accumulated in single
precision. Google’s TPU v3 claims 420 TeraFLOPS, also in doing
half precision matrix-matrix multiplication. In contrast, V100 single
precision peak performance is 14 TeraFLOPS, and double precision
is 7TeraFLOPS. Having these neural engines greatly speeds up ap-
plications that primarily spend time in low precision matrix-matrix
multiplication, and also results in much higher energy efficiency.

However, outside the neural networks, the effective use of such
neural engines is only emerging. Two challenges must be addressed
in using neural engines: 1) how to expose enough locality and
parallelism to enable neural engines to run at high speed? 2) how
to mitigate the loss of accuracy of using the limited half preci-
sion format? In this paper, we present an effective use of NVIDIA
TensorCore units to QR factorize matrix and its applications in
solving linear least square problems, orthogonalization, and low
rank approximation. Least square problem and its many variants
are prevalent in science, engineering, and statistical machine learn-
ing; for instance, non-linear least square problems are probably
the largest source of all non-linear optimization problems. As such,
QR factorization and its applications form a core component of
any linear algebra packages such as LAPACK [1] which have been
downloaded millions of times, and supported by all major processor
vendors.

Thus, we set to answer the following question: is it profitable to
use neural engines to accelerate common linear algebra operations
reliably and accurately? We use QR factorization to demonstrate
that the answer is yes, but new algorithms are needed to satisfy the
data locality and parallelism that neural engines need to run at full
speed and to compensate for the loss of accuracy and stability.

We consider the contributions of this paper to be:

!https://cloud.google.com/tpu/
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e We propose novel recursive Gram-Schmidt QR that exhibits
better data locality at the cost of doing more computations.
The net result is vastly faster QR (3.0x to 14.6x, reaching
36.6TFLOPS) compared to single precision cuSOLVER QR
(SGEQREF).

e We devise cheap iterative refinement, re-orthogonalization,
and automatic column scaling to regain accuracy and avoid
overflow.

e We conduct a comprehensive empirical study of the accuracy
and performance of QR factorization, least square solver, and
orthogonalization for a variety of matrices, with different
sizes, aspect ratio, and spectrum distribution.

The paper is organized as follows. Section 2 introduces numerical,
algorithmic, and the architectural background to understand this
paper. Section 3 introduces the main methods, analysis, and ratio-
nale behind our algorithmic design and implementation. Section
4 is a comprehensive empirical study on the accuracy and perfor-
mance of the proposed methods. Section 5 discusses related work
and the context around this paper, and section 6 wraps up it with a
conclusion.

2 Background

In this section, we review some background that are most rele-
vant to understand this paper.

2.1 Half Precision Arithmetic and TensorCore
GPU

NVIDIA introduced a specialized unit called TensorCore from their
Volta architecture, which boasts up to 120 TFLOPS (120 x 102 float-
ing point operations per second) for half precision (FP16) matrix-
matrix multiplication. Compared to single precision SGEMM (Sin-
gle precision GEneral Matrix-Matrix multiplication) and double
precision DGEMM, TensorCore is 7x and 14x faster respectively,
which is a considerable upgrade in the performance at the cost of
significantly lower precision and consequent loss of accuracy and
numerical stability.

TensorCore only supports matrix-matrix multiplication (GEMM?).

The easiest to use APIis from cuBLAS, and it has many variations. A
more flexible and also highly efficient way to program TensorCore
is through the CUTLASS template library® from NVIDIA, or di-
rectly call the WMMA intrinsic. For this paper, we use TensorCore
through cuBLAS library.

The Google Tensor Processing Unit (TPU) also depends exten-
sively on 16 bits floating point matrix-matrix multiplication to
achieve its claimed 420 TFLOPS in its latest TPU v3 offering. How-
ever, the 16 bits floating point format TPU uses is slightly different
from the NVIDIA TensorCore; TPU uses the bfloat16 format, which
has 3 fewer bits for mantissa and use 3 more bits for exponents so
it can represent a wider range of numbers at a lower resolution.
Intel also planned to introduce bfloat16 processing (together with
FP32 accumulation) in their future processors (Cooper Lake Xeon)
so we will see more variety of half precision support in mainstream
processors, which makes it even more useful to extend the use
pattern of low precision computing beyond deep neural networks.

2LAPACK subroutine naming convention: SGEMM means single precision general matrix
multiplication, and DGEMM means double precision one
3https://github.com/NVIDIA/cutlass
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Let us take a look at the different floating point format and
see what gives and what takes in terms of accuracy (resolution in
representing real numbers), and range (smallest and largest rep-
resentable real number) The IEEE single precision floating point
format is accurate and widely ranged, for it has 32 bits to spare.
There are currently two widely implemented 16 bits floating point
formats. Among them, IEEE FP16 has a significantly constrained
range, but its resolution (the unit roundoff error—the distance to
the next representable number from 1) is about 10 times better than
bfloat16. bfloat16, on the other hand, has the same range as single
precision, but its resolution is very limited (there is no bfloat16 num-
ber between 1 and 1.0078). So bfloat16 is more robust (less prone
to overflow and underflow) but less stable/precise (large roundoff
error). In this paper, we use FP16 format supported by NVIDIA
TensorCore.

2.2 Linear Least Square (LLS) Problems

LLS problems are prevalent in natural science, engineering, and
data science. To give a specific example (gradiometry), consider
the large scale least square problems solved today concerning the
determination of the Earth’s gravity field from highly accurate
satellite measurements [16]. Another example is the least square
problems arising from many fields (data fitting, statistical machine
learning, geodesy, computer vision, robotics (bundle adjustment),
etc). Non-linear least square problems can often be solved as a series
of linear least square problems.

The (over-determined) linear least square problem is stated as
an minimization problem:

min ||Ax — b||? (1)
X

where A € R™"(m > n) has full column rank, and b € R".
Geometrically, this minimization is to find the "projection” of point
b onto the range (column space) of matrix A. Analytically the LLS
problem has closed form solution:

x* = (ATA) AT ()
Computationally, the analytical solution can be obtained by solving
the square linear equation (called the normal equation): AT Ax =
ATb. Typically a Cholesky factorization of ATA = LLT can lead to
a solution, via backward and forward substitution; this method is
called normal equations. However directly forming AT A is unstable
for all but the most well-conditioned systems; in practice we would
avoid forming AT A directly.

A much more reliable and accurate method is based on QR fac-
torization. For a tall and skinny matrix A it takes roughly 2x flops
than the normal equations method, but it handles a much wider
range of matrices. The basic idea is as follows. First we factorize
the rectangular matrix A € R™" m > n into the product of an
orthogonal matrix Q € R™*" and a square upper triangular ma-
trix R € R™": A = QR. Then the solution to (1) is given by the
following elementary matrix-vector operation:

" =R\(Q"b) 3)

The aforementioned direct solvers are robust but could be slow
for large scale problems. Iterative methods are more attractive for
large scale and especially sparse problems, where the only operation
involving matrix A is the matrix-vector multiplication Av and AT v,
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Terminology Definition

LLS Linear Least Square

TFLOPS Tera floating point operations per second.

cond(A)/k(A) Condition number of a matrix A

cuSOLVER A CUDA library from NVIDIA that provides LAPACK-like
direct solvers

SGEMM Single precision General matrix multiplication

TC-GEMM TensorCore General matrix multiplication

GEMV General matrix vector multiplication

[S/D]JGEQRF Single/Double precision General matrix Householder QR
Factorization T

[S/DJORMQR Orthogonal Multiply by Q from QR factorization: Perform
QC or QT C with the implicit Q formed by Householder QR.

[S/D]JTRSM Single/Double precision; solve a triangular system.

CGLS Conjugate Gradient method for Least Square

CAQR Communication Avoiding QR factorization

RGSQRF* Recursive Gram-Schmidt QR Fatorization

[S/D]JCuSOLVE  Single/Double LLS direct solver
([S/D]JGEQRF+[S/D]JORMQR+[S/D]TRSM)

[S/D]SOLVE Single/Double solve QRx = b (GEMV+[S/D]TRSM)

Table 1: Definitions of Terminology and Abbreviations, the first
block is the general abbreviations, the second block is the com-
monly used routines, the third block is the methods used in our
work

In this paper, we are going to combine the direct solver based
on QR factorization (preconditioning), with an iterative method
as safeguards to refine accuracy (iterative refinement). The hope
is that we can get the best of both worlds—the opportunity to
use TensorCore and predictability/stability of direct methods, and
flexibility to take an inaccurate solution/factorization and turn it
into an increasingly accurate solution through iterations.

2.3 Terminology or Abbreviations

To make this paper more readable, the definitions of terminology
are given in Table 1.

3 Methods

In this section, we set out to design and engineer a TensorCore
accelerated QR factorization subroutine, and devise iterative re-
finement, re-orthogonalization, and scaling to regain accuracy and
reliability lost due to half precision TensorCore under the context
of LLS, orthogonalization, and optimal low rank approximation.
We also provide error analysis to guide the use of TensorCore ac-
celerated QR and the various accuracy improvement techniques.

3.1 Accelerating QR factorization on
TensorCore

As briefly introduced in section 2.2, QR factorization is one of
the most fundamental matrix factorizations in numerical linear
algebra. It seeks to factorize a general matrix A into a product
of an orthogonal matrix Q and an upper triangular matrix R. QR
is almost always an important building block of any numerical
linear algebra packages such as LAPACK [1], ScaLAPACK[7]. On
GPU, NVIDIA provides well-optimized cuBLAS for basic matrix
operations such as multiplication, and cuSOLVER for high-level
matrix factorizations, such as LU/QR and eigendecompositions. A
more comprehensive package is the MAGMA [14], which uses a
hybrid CPU/GPU architecture.

4Contribution of this paper
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3.1.1  Why can’t | just replace all matrix multiplication with Ten-
sorCore and get higher performance? Unlike matrix-matrix multi-
plication, matrix factorization typically exhibits more dependency
and less parallelism, and a more complicated memory access pat-
tern. Therefore, matrix factorization cannot achieve the speed of
matrix-matrix computation, but with algorithmic innovations called
"blocked" or "tiled" QR could approach a significant fraction of peak
performance. The idea of the tiling is to aggregate matrix-vector
operations into fewer but bigger matrix-matrix multiplications, to
increase arithmetic intensity (ratio between operations and number
of elements) therefore enabling better data locality in the trail-
ing matrix update. This technique is essential in bridging the gap
between fast processor and slow memory, using the fast on-chip
memories (registers, caches) to service most of the memory access.
But because of the complex dependency, some part of the factor-
ization is still matrix-vector and vector-vector based, which have
much lower data locality. Modern algorithms and implementations
usually divide each iteration of the factorization into two steps:
panel factorization (slow, but small) and trailing matrix update
(fast and big matrix multiplication), where most the floating point
arithmetic is spent in the trailing matrix update. Based on this
structure, a straight-forward strategy is to leave panel factorization
intact, while replacing the trailing matrix update with TensorCore
GEMM. However, this simple strategy is not enough to yield signif-
icant speedup for QR for the following reasons:

The matrix multiplication is not completely on the crit-
ical path. The MAGMA [14] QR uses a hybrid CPU/GPU archi-
tecture where panel factorization is on CPU, and trailing matrix
update (GEMM) is on GPU. Due to algorithmic pipeline, the GEMM
execution is completely or partially overlapped by the panel, thus
speeding up GEMM has only limited effect on the overall QR speed.
See Table 2 for an illustration. It seems to suggest that just by
replacing the trailing matrix update with TC-GEMM leads to un-
derwhelming speedups.

Performance in TFLOPS
block size 32 64 128 256 512 768
MAGMA QR 458 6.09 451 336 173 0.86
MAGMA QR with TC 4.63 7.02 4.87 3.52 1.64 0.86

Table 2: Performance MAGMA 2.5.2 SGEQRF() subroutine with trail-
ing matrix using SGEMM vs. TC-GEMM on AMD Ryzen Threadrip-
per 2970WX 24-Core Processor clocked at 2.4GHZ, with Titan V Ten-
sorCore, linked with MKL 2019.0.5. Matrix size 3276816384

The tiled algorithm is not exposing enough data locality
for significant acceleration The NVIDIA cuSolver SGEQRF sub-
routine is a pure GPU implementation of tiled Householder QR,
which has GEMM on its critical path. However, the tiled QR al-
gorithm does not provide enough data locality for the GPU and
TensorCore. According to our benchmark in Table 3, TC-GEMM
needs the smallest dimension to be at least 2048 to achieve max-
imum performance, while SGEMM needs around 1024. However,
with such large block size, a large proportion of computation is
spent in panel factorization which has low arithmetic intensity. To
summarize, smaller block size B results in more FLOPs in matrix
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I Tiled Householder QR with TC-GEMM
[ Tiled Householder QR with SGEMM

TFLOPS

128 256 512 1024 2048
block size B

4096 8192 16384

Figure 1: Estimated performance of blocked Householder QR with
different block size B: trailing matrix update using TensorCore vs.
without TensorCore, based on Table 3 and formula (4)
multiplication which runs slower, and bigger B results in fewer
FLOPs in matrix multiplication, but they run faster. Typically, em-
pirical tuning of B is required to achieve a good balance. The tiled
Householder QR factorization spends 2 parts of computation in the
panel (SGEQRF in Table 3), and n/B parts in the trailing matrix
update ( TC-GEMM/GEMM in Table 3); for details refer to this pa-
per [4]. Thus we can estimate the performance of the conventional
blocked Householder QR factorization with cuSOLVER SGEQREF()
as panel and TC-GEMM/SGEMM as trailing matrix update:

n/B+2

SHouseQR(B) = 4

2 + n/B

SsGeQrr(B)  ScEmm(B)

which is plotted in Figure 1 for a 32768x16384 matrix. We can
draw two conclusions: 1) In tiled Householder algorithms, enabling
TensorCore for the trailing matrix update (TC-GEMM vs. GEMM)
does increase the overall performance but only by around 30%;
2) Even with TC-GEMM enabled, the overall performance of the
accelerated blocked Householder QR is no better than cuSOLVER
SGEQREF(), which achieves >6 TFOPS.

3.1.2 Do more in less time: Recursive Gram-Schmidt QR Factoriza-
tion There is another variant of QR algorithm that can also turn
most of its operations into matrix-matrix multiplication—recursive
QR. The idea of recursive QR has been explored by [17] to replace
the panel factorization in QR. It’s only used in the panel because
it increases the number of operations needed to 2x that of House-
holder QR. The big increase in operation counts is probably the
reason that recursive QR is not used often in practice. On the other
hand, Recursive QR has the advantage of increased data locality,
thus the limited use of QR in panel factorization is able to balance
out its limited increased operation count and get a modest overall
speedup.

In order to take better advantage of the TensorCore we will em-
ploy recursive QR as the overall QR algorithm. We mitigate the in-
crease of operations, by resorting to a different basic QR algorithm—
(modified) Gram-Schmidt (MGS)—rather than conventional House-
holder QR. It turns out that with MGS Recursive QR, the operation
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x|

1

k TC-GEMM SGEMM TC-GEMM SGEMM SGEQRF

128 8.45 1.83 4.44 2.28 0.10
256 30.17 4.19 11.39 5.91 0.14
512 56.48 8.23 58.05 10.19 0.36
1024 72.39 12.43 77.58 12.80 0.79
2048 93.53 13.54 87.29 13.56 1.55
4096 97.82 12.31 92.72 12.81 2.71
8192 92.75 12.94 92.20 13.04 4.39
16384 82.32 12.96 83.40 13.12 6.67

Table 3: TC-GEMM and SGEMM Performance in TFLOPS as k
changes from 128 to 16384 with fixed m = 32768. In columns 2-3,
A € RF*m B ¢ R™M*k In columns 4-5, A € R™*k B e RF*k In col-
umn 6, A € R™*¥_ The device is an NVIDIA V100 PClIe version. The
TC-GEMM, SGEMM, SGEQREF are from cuBLAS in the CUDA 10.1
distribution.

counts, which can be solved by recurrence (5), only increases mod-
erately compared to Householder QR (2mn? vs 2mn? — %n3, at most
50% increase for m > n.) instead of a 2x increase. But because we
can dramatically accelerate the matrix-matrix multiplication, it has

the potential to result in faster overall execution time.

T(n) = 2T(%) + mn?,
T(n) = 2mn?,

n> 128

n =128 )

The basic idea of recursive QR is a quite simple one. Given a
matrix A, we divide evenly its columns into two halves, denoted by
A = [A1|Az]. We first QR factorize the first half A} = Q;R;1, and
then compute north-east quarter of Ry2 = QITAZ. Next we update
the second half A2 = Az — Q1R12. Finally, QR factorize the updated
second half Ay = Q2Ry,. Note that the QR of the two halves can be
recursed using this algorithm itself. The result of the original QR
factors can be assembled like this:

(6)

(Ariae] = Qi1ge) [-RL R

Algorithm 1 Recursive Gram-Schmidt QR Factorization, with re-
cursion cutoff size 128
function [Q,R] = RGSQRF(A)

1

2 [m,n] = size(A);

3 if n==128

4 [Q,R] = panelQR(A);

5 return

6 end

7 [Q1,R11] = RGSQRF(A(:,1:n/2));

8 R12 = Q1" x A(:,n/2+1:n);

9 [Q2,R22] = RGSQRF(A(:,n/2+1:n) - Q1 * R12);

10 Q = [Q1 Q21;
11 R = [R11 R12; zeros(n/2) R22];
12 end

The basic structure is the Algorithm 1, and the implementation
uses cuSOLVER SGEQRF () as the panelQR (line 4) when the input
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[ RGSQRF with TC-GEMM
[ RGSQRF with SGEMM

TFLOPS
o
T

1024 2048
recursion cutoff size B

128 256 512 4096 8192 16384

Figure 2: Estimated performance of RGSQRF with different block
size B: matrix-multiplication using TensorCore (TC-GEMM) vs.
without TensorCore (SGEMM), based on Table 3 and formula (7)
matrix A becomes small (e.g. n = 128). For matrix size m X n, this
algorithm roughly takes 2mn? flops.

Let’s do a similar estimate of the performance of this algorithm
based on the benchmark in Table 3 for a 32768x16384 matrix and see
if the RGSQRF algorithm can expose more data locality to perform
better than tiled QR. In each function call RGSQRF (), roughly half
of the flops is in matrix-matrix multiplication and the other half of
the flops spent in the two recursion function calls. Thus, we have
the following recursion for the performance (TFLOPS) of a m X n
matrix:

S (m.n) SSGEQRF(T?, n), 1 n=B38

RGSQRF\", =
© 2/( SrGSQRe(m,n/2) + STC—GEMM(m,n/z))’ n>B
(7)

We calculate SrgsQrr(32768, 16384) using a range of cutoff B and
show the result in Figure 2. Compare this figure with Figure 1, it’s
clear that Recursive QR exposes more data locality than tiled QR,
and allows better speedups from TensorCore. Factoring the extra
20% computations, the RGSQREF still gains significant speedups from
TC-GEMM, and surpasses the performance of SGEQRF() by about
37%. Furthermore, Recursive QR can achieve optimal performance
even at a small panel size B = 128, which would be important
for reducing the footprint and global memory traffic in the next
subsection.

3.1.3 Do more in less time: Communication Avoiding Gram-Schmidt
QR Factorization Panel The recursive Gram-Schmidt QR seems to
be able to benefit from TensorCore substantially, but the unacceler-
ated panel factorization (cuSOLVER SGEQREF()) limits the overall
speedup severely. In this subsection, we once again trade computa-
tions for more data locality (fewer data movements/communication)
in the panel, by employing the communication avoiding Gram-
Schmidt QR.

The challenge in fast panelQR is that of data locality and paral-
lelism. The conventional Householder panel has sequentially de-
pendent iterations, and the working-set is the whole panel which
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cannot fit in fast memory on GPU (register files+ shared mem-
ory). Fortunately for QR, there’s a communication avoiding QR
(CAQR) [1] variant that simultaneously improve parallelism and
data locality, at the cost of more computations. Our panelQR is
based on CAQR, with the Modified Gram Schmidt QR replacing
Householder QR used in [1]. The idea of CAQR can be illustrated
in equation (8).

Aq Ok On Ry
Az |@| QuRe |2 Q2 R,
As Q13R3 Q13 R;
Ay Q1aRy Q14 Ry
On QO
® O12 Q2
= R 8
O13 Q23 ®)
Q14 Q2
011021
® | Q1202 ®
= R=0R
013033 Q
Q1402

In (8), there are 5 steps indicated by the number over the equality
sign. In the @ step, we divide a tall matrix A evenly into 4 smaller
matrices (still tall, more rows than columns), and QR factorize them
independently. In step @ we stack the R factors vertically. Note that
the number of rows of the R factors is less than the number of rows
of the original A. In step @, we factorize the vertically stacked Rs
(potentially carry this process recursively). In @, we do 4 matrix-
matrix multiplications for the 4 corresponding Q factors. In ® we
reinterpret the result as the QR factors of original A. The reason Q
is orthogonal, is that in step @ the 4 matrix-matrix multiplication is
equivalent to the product of two orthogonal matrices (second line)
and therefore is orthogonal.

Practically, we fix our panel to be of 32 columns with m rows
and decompose the matrix A into 256x32 submatrices (step @). On
V100 GPU, the 256x32 submatrix can fit into shared memory so
that we only need to read and write global memory once. These
256x32 blocks are independently factorized using the modified
Gram-Schmidt algorithm into QR factors; see algorithm 2. To map
this algorithm to GPU effectively, we let each threadblock QR fac-
torize one 256x32 block. We launch 256 threads, with each threads
reading, processing, and writing a single row of the 256x32 block.
The most time-consuming part is line 7 where reductions are needed
(vector inner products across threads). We use CUB template li-
brary® from NVIDIA Research to have a threadblock level fast
reduction. We manually unroll the loop 4 ways to expose more
instruction-level parallelism, and to reduce the number of reduc-
tions by a factor of 4. In step @ we use cuBLAS batched SGEMM()
subroutine to do the matrix multiplications in parallel. We recurse
in step ®, until the number of rows is below 256 so that a single
threadblock will suffice.

In summary, our CAQR implementation has two salient features:
1) the Gram-Schmidt process is run completely within shared mem-
ory; 2) all the inter-threadblock communication/synchronization
happens in the batched SGEMM() which is extremely fast. Hence
our CAQR panel reads global memory minimally (logg(m/256)

Shttps://nvlabs.github.io/cub/
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passes to the panel) , and have minimal cross threadblock syn-
chronization and communication.

Algorithm 2 256x32 Modified Gram-Schmidt QR, as implemented
in the CUDA kernel
function [Q,R] = mgs(A)

2 [m,n] = size(A);

3 Q = A; R = zeros(n);

4 for k=1:n

5 R(k,k) = norm(Q(:,k));

6 Q(:,k) = Q(:,k)/R(k,k);

7 R(k,k+1:n) = Q(:,k)' * Q(:,k+1:n);

8 Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n)
9 end

0 end

For a 32768x128 panel, our hand coded CAQR panel achieves
0.33TFLOPS, which is 3.3x faster than cuSOLVER SGEQREF(). As
a result, the RGSQREF() algorithm equipped with the new CAQR
panel is estimated to achieve 27 TFLOPS on 32768x16384 matrix
using the estimation formula (7). We will have more comprehensive
empirical study in section 4; in fact as data in Figure 6 shows our
actual implementation achieves 26.2TFLOPs, which is very close to
what we have estimated.

3.2 Linear Least Square Problem with QR
Factorization

One important use of QR factorization is to solve linear least square
problems.

3.2.1  Numerical Issues A natural concern for using the half preci-
sion TensorCore matrix-matrix multiplication is the potential loss
of accuracy and stability. In the case of QR, two kinds of accuracy
are of importance: the backward error and the orthogonality of the
[|A-OR]|

Q factor. The backward error is AT
Qis |II- 07 Qll.

Ideally, these two numerical errors should be zero, but because
of roundoff errors (exacerbated by using low precision TensorCore)
and potential loss of orthogonality of Gram-Schmidt QR, the QR
factorization might not be accurate enough for solving the LLS

problem.

and the orthogonality of

3.2.2 Direct Solve with QR The accuracy of the direct solution
of LLS problem using QR factorization using (3) depend on the
accuracy of the QR factorization. To measure the accuracy of a
solution to the linear least square problem miny ||Ax — b||, we use
the following accuracy metric:

AT (A% - b)
for a computed solution X. Ideally, this metric should be 0, but will

not be exactly zero due to roundoff errors in the QR factorization.
Therefore smaller is better for this accuracy test for LLS.

3.2.3 lterative Refinement It can be seen that directly solve the
LLS problem with our low precision QR factorization may not lead
to sufficient accuracy. To achieve higher accuracy, we refine the
solution. There are two approaches to this task. One is actually
called iterative refinement in the literature [5, 6, 12, 25]. Another
one, which appears to be new for this purpose is what we are going
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to introduce. It’s a Krylov subspace iterative solver for LLS, cou-
pled with our low-precision QR factorization as preconditioner
to achieve high accuracy and fast convergence. This idea blurs the
distinction between direct solver and iterative solver; it inherits the
stability and robustness of direct solver, while retains the flexibility
and the iterative nature of Krylov iterative solver. We use the CGLS
iterative solver, which is mathematically equivalent to Conjugate
Gradient on the normal equation, but numerically more stable. We
list the algorithm with the QR factorization in Algorithm 3.

Algorithm 3 LLS High Accuracy Solver: CGLS with RGSQRF as
Preconditioner?

function [x] = cgls_qr(A,b)

1

2 [Q,R] = RGSQRF(A); % TensorCore QR
3 [m,n] = size(A);

4 x = zeros(n,1);

5 r=b - Axx;

6 s = A'xr;

7 p =s;

8 norms@ = norm(s);

9 gamma = norms@"2;

10 for k=1,2,...

1 q = Ax(R\p);

12 delta = norm(q)"2;
13 alpha = gamma/delta;
14 X = x + alphax*p;
15 r = r - alphaxq;
16 S = R\(A'*r);

17 norms = norm(s);

18 gammal = gamma;

19 gamma = norms”2;

20 beta = gamma / gammal;
21 p = s + beta*p;
22 end

23 end

2 The convergence test is omitted. This presentation is adapted from Per
Christian Hansen and Michael Saunders at
https://web.stanford.edu/group/SOL/software/cgls/matlab/cgls.m

This algorithm first calls upon the fast RGSQRF to do QR fac-

torization, and then runs CGLS algorithm, with the R factor as the
right preconditioner for A. For a sufficiently accurate QR factor R,
AR~ should be fairly well-conditioned, which means that x(AR™1)
is small (close to 1, ideally). The convergence rate is linear; specif-
ically the error is reduced by at least a constant factor in every
iteration [39]:
k(AR -1 k
k(AR71) +1 )
With perfect QR factorization k(AR™!) = x(Q) = 1, and CGLS
converges in 1 iteration. With imperfect QR, we need slightly more
iterations to converge; see experiment section 4.2 for some empirical
examples.

ek:eo(

3.3 Orthogonalization

Another important application of QR factorization is called
orthogonalization— finding an orthogonal basis of the columns of
matrix A (which is given by Q in the QR factorization). The RGSQRF
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Figure 3: QR factorization accuracy; backward error (smaller is bet-
ter) RGSQREF vs. SGEQRF. matrix size 3276816384, SVD arithmetic
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Figure 4: QR factorization orthogonality accuracy: SGEQRF vs.
RGSOQREF vs. RGSQRF-Reortho, matrix size 3276816384, SVD arith-
metic distribution

algorithm inherits one of the deficiencies of Gram-Schmidt orthog-
onalization procedure in the loss of orthogonality of the Q factor
for ill-conditioned matrices. If we need accurate orthogonalization
results for some application then we need to refine the orthogonal-
ity of the Q factor. To do that we can re-orthogonalize the Q factor
again using the RGSQRF subroutine: Q = Q2 * Ry. This procedure
is akin to the block re-orthogonalization in Gram-Schmidt QR [38].
The general result can be summarized by “twice is enough”: orthog-
onalizing twice should bring the orthogonality to fully working
precision. For some analysis behind this technique, we refer to [18];
here we show some empirical study that demonstrates the practi-
cal efficacy of re-orthogonalization. From Figure 3 we see that the
backward error (||A—QR||/||A]|) is not affected by cond(A) for both
RGSQRF and SGEQREF, and it’s up to the full working precision, half
and single respectively. From Figure 4 we see that SGEQREF is fully
orthogonal up to working precision, whereas RGSQRF’s orthog-
onality deteriorates with the increase of cond(A). However, with
re-orthogonalization, RGSQRF-ReOrtho can be brought back to or-
thogonality up to working precision. With re-orthogonalization,
RGSOQRF is 3.7x to 7.7x faster than SGEQRF+SORMOQR from
Figure 5.

3.4 Optimal Low Rank Approximation

Yet another application of QR factorization is computing optimal
low rank approximation of a tall-skinny (data) matrix using the
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Figure 5: QR factorization performance: RGSQRF-Reortho (left bar)
vs. cuSolver SGEQRF plus generating Q (SORMQR) (right bar) for
different matrix sizes.

|A - QU= VT II/114ll

rank r RGSQRF-SVD  SGEQRF-SVD

16 9.77e-01 9.77e-01

64 9.08e-01 9.08e-01

128 8.18e-01 8.18e-01

256 6.49¢-01 6.49¢-01

512 3.53e-01 3.53e-01
QR-SVD

RGSQRF-SVD  SGEQRF-SVD

time(ms) 274.95 1755.19

Table 4: QR-SVD based optimal low rank approximation for a tall-
skinny matrix of size 524288*1024. The matrix is randomly gener-
ated with arithmetic singular value distributions, cond(A) = 10°.

efficient QR-SVD algorithm: A = QR, R = UsVT, and we have
SVD of A = QUEVT. The optimal low rank approximation has
many uses such as data compression, dimension reduction, princi-
pal component analysis, etc. For tall-skinny matrix, the dominant
computations are spent in the first step—QR factorization, which
can be substantially accelerated using our proposed RGSQRF. With
SVD, we can truncate it to low rank to obtain the optimal rank-r
approximation A x A, = QU, 2 rVrT. Since truncation error is most
likely to be dominant, the roundoff errors in RGSQREF is insignif-
icant, thus no refinement or re-orthogonalization is needed. See
Table 4; we get the same quality optimal low rank approxi-
mation as single precision QR-SVD, while 6.4x faster.

3.5 Rescaling the matrix to mitigate
over/underflow

One of the important haphazard in using TensorCore is the limited
range of TensorCore internal half precision floating point format.
For example, if a matrix element is larger than 65504 then when it
gets converted to half precision in TensorCore there’s an overflow
that either result in infinity or unbounded error. To avoid such
catastrophe, we can take advantage of one property of QR factoriza-
tion: rescaling the columns of the matrix A does not affect the QR
factorization. Specifically, we can arbitrarily scale the columns of
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A (equivalent to multiplying a diagonal matrix P to the right of A:
AP), and The Q factor remains unchanged; the columns of R factor
will get scaled by the same P: AP = QRP so that we can recover the
QR factorization of the original matrix easily. This property holds
not only mathematically but also numerically, as long as the scaling
itself is accurate. This property allows us to rescale a badly-scaled
matrix A to the range of half precision floating point: 6 x 1078 to
65504, such that overflow will never happen, and underflow will be
reduced or eliminated. This scaling can be done fully automatically
and very cheaply by examining every column of A for a scaling
factor. Since orthogonal transformation preserves 2-norm, once the
initial matrix is properly scaled then all intermediate operations
will not overflow. Note that on the contrary, LU factorization does
not guarantee this.

3.6 Error Analysis

This section is devoted to the error analysis of the RGSQRF al-
gorithm. Basically, two kinds of error would be considered: the
backward error and the orthogonality of the Q factor. For calculat-
ing the backward error, we can use the below equation.

1A~ ORIl
[1All2
In [40] author has found the bounding of backward error % <

cv in which c is a constant number and v is unit roundoff. It is
obvious that in this equation the backward error is small and inde-
pendent from the condition number. As discussed in the previous
section, the orthogonality error can be defined by

1= 0Tl

Based on our experiment, this error is between Recursive-CGS
and Recursive-MGS. In [18] the authors proved that for CGS the
loss of orthogonality can be bounded in terms of the square of
the condition number k(A). In contrast, Bjorck [40] proved that
the loss of orthogonality in MGS depends only linearly on k(A).
So, we can claim that the error bound of our method would be
between bounds of CGS and MGS, which in worse case is the square
of the condition number x(A)? times the unit roundoff. However,
according to our experimental result, it is closer to € times k(A).
Moreover, if we used re-orthogonalization in our method, the error
bound for orthogonality is || — OTQ|ls < e which removes its
dependence on the condition number of A. In this way, we can
conclude that re-orthogonalization will decrease the amount of
the error bound and two times orthogonalization are enough for
ensuring the orthogonality of matrix Q [3, 18].

4 Experiments

In this section, we conduct a comprehensive empirical study
on the numerical behavior (accuracy), and performance behavior
of our proposed RGSQRF and Linear Least Square Solver. We pay
special attention to how enabling/disabling TensorCore for matrix
multiplication affects the performance.

For all the experiments we use a Redhat 7 Linux workstation with
NVIDIA V100 (PCle version) GPU. The CUDA version is 10.1, which
contains a C++ compiler and libraries cuBLAS and cuSOLVER. For
the LLS experiments, we used random matrix generation routine
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Figure 6: RGSQRF performance with different panel: CAQR panel
(left bar) vs. SGEQRF panel (right bar). In the label TF means
TFLOPS, dx means d times speedup over baseline cuSOLVER SGE-
ORF

from MAGMA 2.5.1 to generate a random matrix with a specific
condition number and singular value distribution.

4.1 QR Factorization

4.1.1 The effect of the CAQR panel on the performance of RGSQRF
Figure 6 illustrates the performance of our two attempts and the
comparison with cuSOLVER SGEQRF. As we can see that for a large
scale matrix, the speedup of TensorCore accelerated RGSQRF is
between 3.0x to 14.6x, depending on the shape of the matrix. From
Figure 6, CAQR panel contributes more when the matrix is skinny,
whereas TC-GEMM contributes more when the matrix is squar-
ish. In summary, it’s clear that the CAQR panel is essential in the
RGSQREF performance improvement over SGEQRF by comparing
the left bar and right bar in Figure 6.

4.1.2  The effect of TensorCore on performance in panel and trailing
matrix update We did some extra experiments to show the effect of
enabling/disabling TensorCore in both the panel and update, shown
in Figure 7. The first uses TensorCore for both panel/update. The
second bar uses TensorCore only in update, the best one that’s
reported in Figure 6. The third bar disables TensorCore.

The first thing we notice by comparing the left bar with the
middle bar is that TensorCore does not help much in the panel.
Therefore, we decide not to use TensorCore in the CAQR panel to
avoid losing accuracy for little gain in speed. On the other hand,
comparing the middle bar to right bar indicates that TensorCore
in update is critical and worth using. In fact, without TensorCore,
RGSQRF may speed down compared to cuSOLVER SGEQREF, espe-
cially for squarish matrices. In summary, TensorCore contributes
critically to the speedups we see in RGSQRF. Note that, the highest
TFLOPS of RGSQREF is 36.6 (32768*32768), which utilizes around
37.4% of the TensorCore peak performance (97.82 TFLOPS).

4.2 Linear Least Square Problem

Unlike QR, whose accuracy only depends on condition number, to
refine LLS solution the CGLS iterative solver performance depends
on the singular value distribution of A. To cover a comprehen-
sive variety of different singular value distribution and condition
number, we use the following randomly generated matrix. 1) each
element is i.i.d. from uniformly distributed random number within
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Figure 7: Performance of RGSQRF with TensorCore enabled vs.
disabled in panel and trailing matrix update. TensorCore in
panel/update are (on,on) for left bar, (off, on) for middle bar, and
(off, off) for right bar.

(0,1) and (-1,1); 2) each element is i.i.d from a normally distributed
random number with mean 0 and standard deviation 1; 3) random
matrix with specified condition number and geometric singular
values (o0;) distribution: [log o1, . . ., log o] are evenly spaced; 4)
random matrix with specified condition number and arithmetic
singular values (o;) distribution: [o7, . . ., o] are evenly spaced; 5)
random matrix with clustered singular values: all but the smallest
singular values are 1.

4.2.1 Performance Based on the performance of QR factorization,
we are also expecting a considerable speedup on solving LLS prob-
lems. To get the same accuracy level with direct LLS solver provided
by cuSOLVER, we combine RGSQRF and CGLS (Algorithm 3) to
refine the solution accuracy. Figure 8 shows the comparison be-
tween the time cost of RGSQRF plus CGLS iterative solver and
direct solver (SGEQRF+SORMQR+STRSM), note that the RGSQRF
solution is able to attain double precision accuracy. Obviously,
we spend extra time in CGLS when compared with direct solvers,
which results in somehow a lower speedup than QR factorization.
But it is still a tremendous improvement in solving LLS problems.
Similarly, there is some tendency that taller and thinner matrices
tend to perform better, which is in line with our observation from
the experiments on QR factorization.

Generally speaking, CGLS converges rapidly with precondi-
tioned AR™!. In the case of uniformly random matrix 32768x16384,
it can reach a competitive accuracy in 20 iterations.

However, the uniform matrix is typically well-conditioned and it
should have a fast converge speed. The convergence rate of an iter-
ative solver like CGLS depends strongly on the spectrum property
of the matrix A. To make the LLS study more general, we gener-
ate different types of matrices with different singular value distri-
bution and condition number. We expect results to be condition-
distribution-related, that is, the larger condition number the matrix
has, the more iterations it will take. In some extreme cases, CGLS
cannot converge to the highest accuracy and we will discuss it
in more detail next subsection. Figure 8a to Figure 8h illustrate
the relationships in terms of condition number, distribution and
number of iterations, and it is consistent to our anticipation. We
observe that in almost all cases RGSQRF with refinement
outperforms single/double precision direct LLS solver using
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[S/D]GEQREF by up to 8.9x/13.5x while achieving the same
accuracy, respectively.

4.2.2  Accuracy At first we would like to show the observations on
the accuracy based on x = R™1(Q7b). Because RGSQRF involves
half precision, so we are not expecting to see as accurate results
as cuSOLVER can provide. As the accuracy showed in Fig 9, we
can conclude that in most cases, RGSQRF direct solver performs
worse than SGEQREF solver and the difference is around two or-
ders of magnitude. It explains why we need iterative methods as a
safeguard.

Fig 9 also compares DGEQREF direct solver, SGEQRF direct solver
and RGSQREF iterative solver accuracy with several condition num-
bers. For RGEQREF iterative solver, we choose a somehow best tol-
erance that will give us a relatively accurate result and reasonable
converge speed. We can observe that if the matrix condition is not
very bad, RGSQRF and CGLS can generate at least the same level
of accuracy with DGEQRF direct solver with a small number of
iterations(shown by the digits in Fig.9).

To sum up, in terms of accuracy, we can claim that RGSQRF with
CGLS refinement can provide a reliable result when compared with
single/double precision Householder QR LLS direct solver at much
faster speed.

According to the experiments on SVD geometric distribution
(Fig 8d), we can find the performance on this type of matrix is not
as impressive as other types. The reason is that CGLS takes 20-30 it-
erations to converge to 1072 (the same accuracy with DCuSOLVE),
while other matrix types typically take less than 10 iterations to con-
verge. We also test SVD geometric distribution with cond = 10* and
it reveals that for matrix size 3276816384, it needs 200 iterations—
which is the max number of iteration we can tolerate—to converge
to 107 and it’s because of the very difficult distribution of singular
values. This represents a stress case for our refinement procedure.
We are still able to achieve single precision accuracy with around
2x speedup, however, we can not achieve double precision accuracy
profitably. If high accuracy is needed double precision QR direct
solve should be used instead, which is beyond the capability of
single precision QR, and certainly beyond the mixed half precision
RGSQRF with refinement.

5 Related Work

NVIDIA introduced TensorCore technology with its Volta ar-
chitecture [32] in 2017. Resources about NVIDIA TensorCore in-
clude detailed micro-architecture analysis and benchmarking [29],
an early report on the programmability, performance, and pre-
cision [31]. In [11] important parallel primitives reduction and
scan is accelerated with TensorCore. In [21-23] TensorCore was
used for accelerating linear system solvers in the framework of
hybrid CPU/GPU linear algebra package MAGMA [14]. There are
numerous use cases of half precision or even lower precision in the
application of neural networks.

The QR factorization, along with LU and Cholesky factoriza-
tion form the one half of important matrix factorizations in nu-
merical linear algebra. QR factorization can be used to solve lin-
ear system, LLS problems, orthogonalization of a set of vectors,
and eigendecompositions; see the encyclopedic book [19] for more
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Figure 8: Performance in milliseconds and speedups of three linear square problem solvers: RGSQREF iterative solver(left bar), cuSolver SGE-
QREF direct solver(middle bar) and cuSolver DGEQREF direct solver(right bar) for different matrix types and sizes.
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Figure 9: LLS accuracy: matrix size 32768"16384 with SVD clus-
ter2 distribution, condition number varies from 10° to 10°. Com-
parison between SCuSOLVE, DCuSOLVE,RGSQRF Direct Solver and
RGSQRF+CGLS. The numbers along with the lines indicate number
of CGLS refinement iterations.

details and pointers. These factorizations for the core of popu-
lar linear algebra packages such as LAPACK [1] and Eigen [20]
for general CPUs, PLASMA [15] on multi-core systems, ScaLA-
PACK [7] and Elemental [35] for distributed memory systems,
and cuSOLVER®/cuBLAS’ for NVIDIA GPU accelerators as part
of CUDA libraries, and SLATE [30] on distributed heterogeneous
CPU/GPU systems. There are primarily three main algorithms for
QR factorization: classic Gram-Schmidt, modified Gram-Schmidt,
and Householder QR [27]. See a blog post from Cleve Moler® for a
simple comparison, and the book [37] for details. The high perfor-
mance implementation of Householder QR depends on blocking, i.e.
aggregating several Householder reflections into a single matrix-
matrix multiplication. The scheme was developed in [36] and used
in virtually all high performance numerical linear algebra packages.
Communication-Avoiding QR is discussed in [2, 13].

The use of QR factorization as a stable method to solve the LLS
problem is a standard direct method. Iterative methods for the LLS
problems are also possible, and maybe preferred for very large
scale and sparse problems. CGLS appeared in [24] together with
the discovery of the Conjugate Gradient method; there’s another
mathematically equivalent but numerically more stable one called
LSQR [34]. In this paper, we take a somewhat unusual approach in
using the iterative method for a general dense problem.

The roundoff error analysis of half precision floating point arith-
metic is only emerging. The report [26] provides some statistical
roundoff error analysis that is more suitable for half precision,
as the traditional deterministic analysis is too pessimistic to give
any useful error bound. The report [8] provides error analysis for
the fused multiply-addition matrix multiplication on TensorCore.
These papers [9, 10] proposes and analyzes a mixed half, single,
and double precision linear solver.

The closest related work is probably the linear solver based
on TensorCore [21-23]. This work shares some ideas with those
recent works in that both compensate the loss of precision from

Shttps://developer.nvidia.com/cusolver

"https://developer.nvidia.com/cublas
8https://blogs.mathworks.com/cleve/2016/10/03/householder-reflections-and-the-
qr-decomposition/
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TensorCore by combining an iterative solver or iterative refinement.
Both contribute to the broad effort in bringing TensorCore to linear
algebra. The distinction is that this paper considers QR factorization
instead of LU factorization, and proposes a GPU only instead of
hybrid CPU/GPU.

There is another related work of mixed precision (single/double)
OR factorization [28]. To perform most of computation using BLAS-
3 kernels, they do a GEMM at first and factorize AT A to obtain R.
However, the orthogonality error of CholQR depends quadratically
on the condition number of the input matrix. The authors propose
a method that some of the intermediate results are accumulated
in the doubled precision and they prove that with this method,
the orthogonality error is only bounded by x(A). In contrast, our
method doesn’t seem to double the condition number of the input
matrix.

A recent paper also utilizes TensorCore to perform QR factor-
ization and they achieve 3x faster than CuSolver [33]. But they are
limited in that only very tall and skinny matrices (with 16 columns)
can be factorized faster, while our method is not only faster but
also can handle arbitrary shapes.

6 Conclusions and Future Work

Neural engines are characterized by extreme performance and
low precision/range. We explored accelerating QR factorization
using neural engines accurately and reliably. First, we demonstrate
that simply replacing matrix-multiplication with neural engines in
conventional QR does not result in much speedup, due to inadequate
data locality and parallelism. We then devised a novel recursive
QR algorithm and a new panel that expose a much higher degree
of data locality at the cost of increased computation. The tradeoff
is essential in effectively exploiting the TensorCore on V100 GPU
which results in 3.0x-14.6x speedup over cuSOLVER SGEQRF.

On the other hand, the low precision of the neural engine may
cause a loss of accuracy. To regain accuracy, depending on how QR
is used we may have different safeguarding procedures. For the least
square solve, we proposed a novel Krylov subspace method as itera-

tive refinement. For orthogonalization, we propose re-orthogonalization

to bring orthogonality to full working precision. For truncated QR-
SVD we often don’t need any refinement as the numerical error is
dwarfed by the truncation error.

We conclude by saying that neural engines can significantly ac-
celerate matrix computations, but intricate analysis and engineering
are needed to balance the time/space complexity of algorithm, uti-
lization of hardware resources, and numerical stability and accuracy.
One interesting question is how this particular effort in QR informs
the use of neural engines in other matrix computations. Firstly,
with neural engines, the already big gap between fast compute and
slow data movement becomes one order of magnitude bigger. This
disrupted balance means that communication avoiding algorithms
(often recursive ones) are essential on neural engines. Such algo-
rithms while theoretically superior, used to be only profitable for
special cases (tall and skinny, small matrix on many processors, etc).
Secondly, careful optimization of the non neural engine accelerated
operations become more critical because neural engine is simply so
much faster, that the speedup is bottlenecked by the unaccelerated
parts. Lastly, more research and developments to expose more ways
to use neural engines beside the matrix multiplication interface


https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cublas
https://blogs.mathworks.com/cleve/2016/10/03/householder-reflections-and-the-qr-decomposition/
https://blogs.mathworks.com/cleve/2016/10/03/householder-reflections-and-the-qr-decomposition/
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will substantially increase the applicability and efficacy of neural
engine for much more applications.
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