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Abstract
Tridiagonalization, which is a key step in symmetric eigen-
value decomposition (EVD), aims to convert a symmetric
matrix to a tridiagonal form. In Nvidia’s cuSOLVER library,
the FP64 precision tridiagonalization process only reach 2.1
TFLOPs out of 67 TFLOPs on H100 GPU, and it consumes
a significant portion of the elapsed time in the entire EVD
process, accounting for over 97%. Thus, improving the tridi-
agonalization performance is crucial on accelerating EVD.
In this paper, we analyze the reasons behind the suboptimal
performance of tridiagonalization on GPU architectures, and
we propose a new double blocking band reduction algorithm
along with an implementation of GPU-based bulge chas-
ing to improve the tridiagonalization performance. Through
experimental evaluation, the proposed FP64 precision tridi-
agonalization method yields up to 19.6 TFLOPs which is 9.3x
and 5.2x faster compared cuSOVLER and MAGMA, respec-
tively.

CCS Concepts • Mathematics of computing → Mathe-
matical software performance; Solvers; •Computer sys-
tems organization → Multicore architectures; • Com-
puting methodologies → Parallel algorithms.

Keywords Eigenvalue Decomposition, GPGPU, Numerical
Linear Algebra, HPC, Matrix Computation
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1 Introduction
Tridiagonalization aims to reduce a symmetric matrix to a
tridiagonal form:

𝐴 = 𝑄−1 ×𝑇 ×𝑄,𝐴 ∈ R𝑛×𝑛,

where 𝑇 is a tridiagonal matrix and 𝑄 is an orthogonal ma-
trix. The tridiagonalization is a key step in symmetric EVD
problems, and is regarded as a ’preconditioner’ to reduce
the execution time of the subsequent iterative methods such
as QR algorithm [24] and divide and conquer method [20].
However, the tridiagonalization is not efficient on high per-
formance GPU architectures. For instance, on H100 GPU,
in terms of FP64 precision, cuSOVLER 1 can only achieve
around 2 TFLOPs, while the theoretical peak performance is
67 TFLOPs. Furthermore, compared to the iterative methods,
the EVD spends over 97% elapsed time on tridiagonalization
when the matrix is large (Figure 4). Thus, to improve the
entire EVD performance, accelerating tridiagonalization is
essential and crucial.
There have been various attempts to optimize the tridi-

agonalization process on GPUs. The main idea is dividing
the tridiagonalization into two stages: 1) successive band
reduction (SBR) to reduce the matrix to a band form, and 2)
bulge chasing (BC) to convert the band form to a tridiagonal
matrix. This 2-stage tridiagonalizationmethod involves more
BLAS3 operations compared to direct tridiagonalization and
has been proven to be faster than cuSOVLER [14, 16, 17]. Un-
fortunately, even the SOTA 2-stage tridiagonalization imple-
mented in MAGMA [22] still shows suboptimal performance,
reaching only up to 3.4 TFLOPs on the H100 GPU.
Therefore, in this paper, we first analyze the reasons be-

hind the suboptimal performance of 2-stage tridiagonaliza-
tion on GPUs. Generally speaking, the symmetric rank-2k
update (syr2k) in SBR and the CPU-based BC process are the
primary bottlenecks. Based on our experiments, the syr2k
operation can only achieve around 20 TFLOPs on H100 GPU.
Additionally, the BC process is executed on the CPU rather

1https://docs.nvidia.com/cuda/cusolver/index.html
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than the GPU, which accounts for around 50% of the elapsed
time of the 2-stage tridiagonalization.
To tackle the bottlenecks, we propose two optimized al-

gorithms that significantly accelerate the 2-stage tridiago-
nalization. The first algorithm, called double-blocking band
reduction (DBBR), uses two different blocksize, enabling
the internal syr2k operations to reach up to 50 TFLOPs on
H100 GPU. This approach also provides a smaller bandwidth,
which can be utilized to accelerate the subsequent BC pro-
cess. The second algorithm is BC on GPU. Although the BC
process is typically not considered for optimization by hard-
ware accelerators [10], we fully exploited the parallelism of
the BC process and implemented it on the GPU. Even though
it is memory-bound, this approach enabled the BC process
to achieve superior performance, running 12.5x faster than
MAGMA on GPUs. We consider the main contributions of
this paper to be:

• We analyze the performance of the conventional tridi-
agonalization algorithm and identify the reasons and
bottlenecks behind its suboptimal performance.

• We propose, implement and optimize two novel al-
gorithms to address the bottlenecks and challenges
in conventional tridiagonalization, including double-
blocking band reduction and GPU-based bulge chasing,
which significantly outperformMAGMA’s correspond-
ing routines.

• We conduct extensive experiments across various ma-
trix sizes and GPUs to demonstrate the efficiency of
the proposed tridiagonalization algorithm. Compared
to cuSOLVER and MAGMA, the speedup reaches up to
9.3x and 5.2x, respectively. Additionally, we integrate
MAGMA’s divide-and-conquer routine for end-to-end
eigenvalue decomposition, which also outperforms the
SOTA EVD solvers.

The rest of the paper is organized as follows: Section 2 ex-
plains the basic concepts of 2-stage tridiagonalization.Section
3 analyzes the performance of conventional 2-stage tridiag-
onalization and points out the bottlenecks. Section 4 gives
the algorithmic design and section 5 presents the optimiza-
tion details. Section 6 evaluates our implementations and
shows end-to-end EVD performance. Section 7 introduces
related work, and section 8 draws a conclusion and depicts
our future work.

2 Background
2.1 Householder Transformation
The Householder reflector is an orthogonal projection con-
structed from reflection against a hyperplane. It is useful
to transform a given vector orthogonally to an axis. Specif-
ically, given a vector 𝑥 , the orthogonal matrix 𝐻 (𝑣) = 𝐼 −
2𝑣𝑣𝑇 /(𝑣𝑇 𝑣) where 𝑣 = | |𝑥 | |𝑒1 − 𝑥 will map 𝑥 to the first
axis: 𝐻 (𝑣)𝑥 = [| |𝑥 | |, 0, ..., 0]𝑇 . The above transformation is

Figure 1. The difference between direct and 2-stage tridiag-
onalization

a rank-1 update, in other words, a BLAS2 operation. Fortu-
nately, we can accumulate several Householder transforma-
tions by the WY representation [3] into a block to enrich
BLAS3 operations. Suppose we have 𝑘 Householder matrices
[𝐻1, 𝐻2, ..., 𝐻𝑘 ], the WY representation will be:

𝐻1𝐻2 ...𝐻𝑘−1𝐻𝑘 = 𝐼 −𝑊𝑘𝑌
𝑇
𝑘

and if the (𝑘 + 1)-th block is factorized, then we have:

𝐻𝑘+1 = 𝐼 −𝑤𝑘+1𝑦
𝑇
𝑘+1

𝑌𝑘+1 = [𝑌𝑘 |𝑦𝑘+1]

𝑊𝑘+1 = [𝑊𝑘 |𝑤𝑘+1 −𝑊𝑘𝑌
𝑇
𝐾𝑤𝑘+1]

The tridiagonalization process, including the direct tridi-
agonalization used in cuSOLVER and the 2-stage tridiago-
nalization implemented in MAGMA [22], LAPACK [2], and
PLASMA [7], requires the Householder transformation to
eliminate off-diagonal and off-band entries.

2.2 Tridiagonalization and 2-stage
Tridiagonalization

The tridiagonalization process is usually the pre-step to
eigenvalue decomposition. The goal of tridiagonalization
can be expressed as follows:

𝐴 = 𝑄−1 ×𝑇 ×𝑄,𝐴 ∈ R𝑛×𝑛,

where 𝑄 is an orthogonal matrix, and 𝑇 is a tridiagonal
matrix. To improve performance on modern computer ar-
chitectures, Dongarra et al. [8] introduced blocked tridiag-
onalization. However, there are still approximately 50% un-
blocked BLAS2 operations. To further increase the number
of BLAS3 operations, a 2-stage tridiagonalization method
was proposed [14]. The first stage, known as SBR, converts
the symmetric matrix to a band form, and the second BC
stage reduces the band matrix to a tridiagonal matrix. The
difference is illustrated in Figure 1.
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Figure 2. The first two iterations in SBR

2.3 Successive Band Reduction
Figure 2 illustrates the first two steps in SBR. The red block
represents a panel, and we can QR factorize the panel such
that 𝑄𝑅(Panel) = (𝐼 −𝑊𝑌𝑇 )𝑅, eliminating the off-band ele-
ments. The 𝑅 matrix will then overwrite the upper triangular
part of the panel. The subsequent trailing matrix update is a
two-sided operation using the ZY representation, which can
leverage the syr2k routine [8], as shown in Equation 1.

𝑍 = 𝐴𝑊 − 1
2
𝑌𝑊𝑇𝐴𝑊

𝐴2 = 𝐴2 − 𝑌𝑍𝑇 − 𝑍𝑌𝑇
(1)

Thenwe can treat the updated trailingmatrix (green block)
as a new full matrix and factorize the matrix iteratively.

2.4 Bulge Chasing
The BC process reduces a band matrix to a tridiagonal or
bidiagonal matrix [9]. In essence, the steps of bulge chasing
are quite similar to those of tridiagonalization, as both iter-
atively apply Householder transformations to the trailing
matrix. The key difference is that the input matrix for BC
is a band matrix, allowing the computations to exploit the
band structure and reduce the number of operations.
The steps of one sweep in bulge chasing are illustrated

in Figure 3. The process iteratively finds the Householder
vectors and applies the Householder transformation to chase
the bulge, which is generated by these transformations, until
the bulge is swept out of the matrix. In Figure 3, the orange
columns denote the search for Householder vectors to elimi-
nate elements in the current column. Once the Householder
vector 𝑣 is formed, we use 𝐻 (𝑣) = 𝐼 − 2𝑣𝑣𝑇 /(𝑣𝑇 𝑣) to update
the diagonal block 𝐵𝑑 , which is shown in red, from both
the left and right sides such that 𝐵𝑑 = 𝐻 (𝑣)−1𝐵𝑑𝐻 (𝑣). The
off-band block 𝐵𝑜𝑙 , shown in green on the left side of 𝐵𝑑 , is
updated only from the left side, such that 𝐵𝑜𝑙 = 𝐻 (𝑣)−1𝐵𝑜𝑙 .
The off-band block 𝐵𝑜𝑑 , shown in green below 𝐵𝑑 , is also
updated from the left side, but in its transposed form, 𝐵𝑜𝑑 ′ =
𝐻 (𝑣)−1𝐵𝑜𝑑 ′, which creates a bulge denoted by the blue blocks.

Figure 3. The single sweep of bulge chasing

To chase down the bulge, we find the Householder vectors
of the first column of the bulge and repeat the above steps
until the bulge is swept down to the last column.

The above steps demonstrate one sweep of the bulge chas-
ing process. In fact, to fully reduce the band form matrix to
a tridiagonal matrix, 𝑛 − 2 sweeps are needed if the given
matrix’s size is 𝑛 × 𝑛.

3 Performance Analysis
3.1 An Overview of EVD Performance
As previously mentioned, the tridiagonalization process is a
critical path in EVD in terms of performance. To substantiate
this claim, we test several routines in cuSOLVER using FP64
precision, including tridiagonalization (Dsytrd) and EVD
(Dsyevd), and in MAGMA, including SBR (Dsy2sb), the BC
process (Dsb2st), and divide and conquer (Dstedc), using a
matrix size of 49152×49152 (the maximum size supported by
cuSOLVER on H100 GPU). The results are shown in Figure 4,
that the overall EVD solver only spends 2.3% and 7.6% of
the elapsed time on divide and conquer. This suggests that
highly optimized tridiagonalization significantly contributes
to overall performance. Unfortunately, in terms of FLOPs,
the tridiagonalization process in cuSOLVER and MAGMA
achieves only 2.0 TFLOPs and 3.4 TFLOPs on a matrix size
of 49152 × 49152. This indicates that the SOTA tridiagonal-
ization process utilizes only about 5% of the hardware’s peak
performance (67 TFLOPs).

Another observation from Figure 4 is that the BC process
accounts for 48% of the elapsed time in the 2-stage tridiago-
nalization implemented in MAGMA, although the number
of floating point operations is less than 10%. Despite this, the
TFLOPs of SBR is around 9, indicating that the BC process is
a critical path in 2-stage tridiagonalization.
By comparing the performance between cuSOLVER and

MAGMA, and noting that the divide and conquer routine in
MAGMA is slower than in cuSOLVER, we observe that the
overall EVD performance in MAGMA, which uses 2-stage
tridiagonalization, is superior to that in cuSOLVER. There-
fore, we will focus on analyzing 2-stage tridiagonalization
rather than direct tridiagonalization.
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Figure 4. The elapsed time (in seconds) percentage of dif-
ferent operations in EVD with matrix size 49152 × 49152 on
H100 GPU. The left pie chart shows cuSOVLER performance
(tridiagonalization 2.0 TFLOPs); and the right pie chart shows
the MAGMA 2-stage tridiagonalization and overall EVD per-
formance (tridiagonalization 3.4 TFLOPs)

3.2 Performance Analysis on SBR
Refer to Figure 2, the SBR firstly selects a panel with band-
width 𝑏 and then QR factorizes factorizes the panel obtain-
ing matrix 𝑍 and 𝑌 . Finally it updates the trailing matrix by
syr2k.
The performance of syr2k is crucial to overall efficiency

because the number of floating point operations in syr2k is
much larger than that in panel QR factorization (𝑂 (𝑛2𝑏) vs.
𝑂 (𝑛𝑏2), where 𝑛 is the number of rows in the panel). We list
the Dsyr2k performance using cuBLAS 2 on H100 and RTX
4090 GPUs in Table 1. These two GPUs represent emerg-
ing high performance GPUs and lower computing capacity
GPUs, respectively. We observe that, given 𝑘 = 128 (the
typical selection in SBR), the syr2k performance on H100
is 21.05 TFLOPs, which is far from the peak. In contrast,
the performance on RTX 4090 is close to the hardware’s
peak performance. This difference explains why SBR is effi-
cient on older GPU architectures but not on emerging GPUs.
Additionally, this discrepancy can be interpreted using the
roofline model [25].

Thus, according to Table 1, on emerging GPU architectures
such as H100, increasing the bandwidth 𝑏 is a viable strategy
to improve SBR performance. However, a larger 𝑏 results
in a significantly slower BC process. For example, given
a matrix size of 49152 × 49152, setting 𝑏 = 64 yields the
performance shown in Figure 4 (SBR takes 22.1 seconds
and BC takes 23.9 seconds). When 𝑏 is increased to 128,
SBR spends 16.5 seconds, but BC costs 84.9 seconds. As a
result, the entire tridiagonalization process becomes slower,
although the bandwidth is only increased from 64 to 128.
Consequently, balancing the performance of SBR and BC is
essential to ensure optimal tridiagonalization performance,

2https://docs.nvidia.com/cuda/cublas/index.html

GPU H100 H100 RTX 4090 RTX 4090
𝑘 𝑛 = 8192 𝑛 = 32768 𝑛 = 8192 𝑛 = 32768

16 0.43 3.58 1.07 1.19
32 0.86 7.02 1.07 1.20
64 1.71 12.78 1.06 1.21
128 3.39 21.05 1.06 1.21
256 6.41 30.13 1.12 1.22
512 11.57 38.31 1.20 1.24
1024 18.91 42.86 1.22 1.24
2048 27.21 45.36 1.23 1.24
4096 34.59 45.54 1.24 1.25

Table 1. The performance of SYR2K on H100 and RTX 4090
GPU with different input sizes (𝑛 and 𝑘) in TFLOPs

which is why the bandwidth is typically selected to be less
than 128.

3.3 Performance Analysis on BC
The BC process is considered not to benefit fromGPUs. Gates
et.al. claims that the bulge chasing process, being limited in
parallelism and close to memory bandwidth limits, would
not benefit significantly from an accelerator-based imple-
mentation, as it is already optimized for CPU caches (Section
4.2 in [10]). So, the bulge chasing named sb2st is always
implemented in numerical linear algebra libraries including
LAPACK [2], PLASMA [7] and MAGMA [22] using CPUs.
The BC process is definitely memory-bound as 𝑏 is typi-

cally very small. But there still remains a question whether
it really lacks parallelism. According to Figure 3, the 4th
Householder transformation in the 𝑖-th sweep does not have
data dependency with the 1st Householder transformation
in the 𝑖 + 1-th sweep. This observation leads to forming a
pipeline of different sweeps and the pipeline is also leveraged
in MAGMA [14]. However, it is unknown why there is no
attempt of deploying BC on GPUs in previous studies.

To evaluate if the BC process can have better performance
on GPU, we create a simple performance model to simu-
late the performance. Assume the matrix size is 𝑛 × 𝑛, the
bandwidth is 𝑏. To simplify the calculation, we assume the
bandwidth 𝑏 can be divided by 𝑛. There are three laws in
calculating the number of bulges:

1○ The 𝑖 + 1-th sweep starts after processing the first three
bulges in the 𝑖-th sweep;

2○ The number of bulges decreases by one after 𝑏 sweeps;
3○ There will be a stall if the hardware is too busy to

support an additional sweep.
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If the hardware supports all of the tasks running in parallel
in the pipeline, and assume the delay of each sweep is 3
bulges, then the total number of successive bulges is 3𝑛 − 2.
The simplified estimation is based on the law 1○ and 2○, that
we can only count the blank bulges in front of each sweep
(3(𝑛 − 1)) and finally add the number of bulge of the last
sweep (only one bulge). However, there’re in total 𝑛 sweeps
to be processed and even the latest hardware cannot provide
such number of cores if 𝑛 is large.

Considering inductive law 3○, suppose that the maximum
number of sweeps supported in the pipeline is 𝑆 . After 𝑆
sweeps, the next sweepmust wait for the first sweep to finish,
causing a stall. The duration of each stall depends on the
number of remaining bulges to be processed. After 𝑆 sweeps,
the first sweep has processed 3(𝑆 − 1) bulges, leaving 𝑛

𝑏
−

3(𝑆 − 1) bulges. There will be a total of 𝑛
𝑆
stalls. Additionally,

based on law 2○, during the 𝑖-th stall, the number of stall
cycles will be 𝑛

𝑏
−
⌊
(𝑖−1)𝑆
𝑏

⌋
−3(𝑆−1). To simplify the analysis,

let’s omit the ⌊⌋ symbol. We find that the stall cycles will be
zero when 𝑖 ≥ 𝑛+3𝑏

𝑆
− 3𝑏 + 1. Therefore, the total number of

stall cycles is expressed as follows:
𝑛+3𝑏
𝑆

−3𝑏∑︁
𝑖=1

(𝑛 + 𝑆

𝑏
− 3𝑆 + 3 − 𝑆

𝑏
𝑖).

The total cycles of BC is the sum of stall cycles and successive
bulges cycles, it can be expressed:

3𝑛 − 2 +
𝑛+3𝑏
𝑆

−3𝑏∑︁
𝑖=1

(𝑛 + 𝑆

𝑏
− 3𝑆 + 3 − 𝑆

𝑏
𝑖).

Considering the parallelism from the SIMT instructions on
GPU, our experimental results show that the approximate
time for chasing down one bulge is around 10𝑚𝑠 on H100
GPU. The total elapsed time for bulge chasing on theGPU can
be evaluated by specifying 𝑛, 𝑆 , and 𝑏. Figure 5 presents the
estimated performance of GPU-based bulge chasing using
the above performance model. The matrix size in Figure 5 is
65536 × 65536 with a bandwidth of 𝑏 = 32, and 𝑆 is varied
from 1 to 128. The red dashed line in Figure 5 represents the
MAGMA sb2st benchmark using the same𝑛 and𝑏. From the
figure, we observe that if the bulges are processed serially,
the GPU-based version is significantly slower than MAGMA.
However, if the number of parallel sweeps is 32 or more, the
GPU-based bulge chasing can potentially outperform the
MAGMA benchmark.
The question now is whether the GPU can provide suffi-

cient parallelism to support more than 32 parallel sweeps.
Recent GPUs, such as H100 [5], have more than 100 stream-
ing multiprocessors (SMs). This implies that even if each SM
processes only one sweep, the anticipated performance for
bulge chasing could still surpass that of MAGMA. However,
the performance model provides only a rough estimation,
as other factors, such as cache reuse and synchronization

Figure 5. The estimated bulge chasing performance on GPU
with matrix size 65536 × 65536 and different maximum al-
lowed parallel sweeps

between different sweeps, are not considered. Nevertheless,
this at least demonstrates that the bulge chasing process has
sufficient parallelism to be utilized effectively.

4 Algorithmic Design
4.1 Double Blocking Band Reduction
To improve the SBR performance, the key is to increase the
dimension 𝑘 . Based on the previous performance analysis,
𝑘 equals 𝑏, and increasing 𝑘 recklessly can lead to lower
tridiagonalization performance. Therefore, we introduce a
novel double blocking scheme for band reduction to increase
𝑘 while maintaining a small 𝑏. Figure 6 illustrates the steps
of the double blocking band reduction (DBBR). In DBBR, we
set up two blocksize: the first block size is the same as in
SBR, which equals the bandwidth 𝑏, while the second block
size 𝑘 is related to the dimension 𝑘 , as shown in Table 1.
The first step is the same as SBR that QR factorizes the

panel, while the trailing matrix update is different. When
the working index is between 𝑏 and 𝑘 , we don’t update the
entire trailing matrix. Instead, we update the next panel until
the working index reaching 𝑘 . Finally, we update the trailing
matrix entirely using syr2k. DBBR allows the 𝑘 in syr2k to
be larger and meanwhile keep small bandwidth 𝑏. Another
advantage of DBBR is that smaller bandwidth is also allowed.
For example, we can set the 𝑏 to be 32, so that the following
BC process can also be accelerated. For instance, with matrix
size 49152 × 49152, BC process spends 16.2s and 23.9s in
MAGMA when 𝑏 = 32 and 𝑏 = 64, respectively. See Algo 1
for more details.

4.2 Bulge Chasing on GPU
Based on the previous analysis, the BC process has the po-
tential to be accelerated by GPUs if we can fully exploit the
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Figure 6. The steps of double blocking band reduction

Algorithm 1 Double Blocking Band Reduction

Input: A full matrix 𝐴 ∈ R𝑛×𝑛

Output: Perform an in-place band reduction on𝐴 to a band
form matrix 𝐵 ∈ R𝑛×𝑛 with bandwidth 𝑏 << 𝑛.

1: for 𝑖 = 1 : 𝑘 : 𝑛 do
2: % Accumulate the matrix Z
3: for 𝑗 = 𝑖 : 𝑏 : 𝑖 + 𝑘 do
4: % Perform QR decomposition on the red panel
5: [𝑧,𝑦] = 𝑃𝑎𝑛𝑒𝑙𝑄𝑅(𝐴( 𝑗 + 𝑏 : 𝑛, 𝑗 : 𝑗 + 𝑏));
6: 𝑍 = [𝑍 |𝑧];𝑌 = [𝑌 |𝑦];
7: % Update the green panel
8: 𝑃𝐴 = 𝐴( 𝑗 + 𝑏 : 𝑛, 𝑗 + 𝑏 : 𝑗 + 2𝑏);
9: 𝑃𝑍 = 𝑍 ( 𝑗 + 𝑏 : 𝑛, :);
10: 𝑃𝑌 = 𝑌 ( 𝑗 + 𝑏 : 𝑛, :);
11: 𝑃𝐴 = 𝑃𝐴 − 𝑃𝑍 ∗ 𝑃𝑌 (1 : 𝑏, :)′ − 𝑃𝑌 ∗ 𝑃𝑍 (1 : 𝑏, :)′
12: 𝐴( 𝑗 + 𝑏 : 𝑛, 𝑗 + 𝑏 : 𝑗 + 2𝑏) = 𝑃𝐴;
13: end for
14: % Update the tail matrix with accumulated Z
15: 𝐴(𝑖+𝑘 : 𝑛, 𝑖+𝑘 : 𝑛) = 𝑠𝑦𝑟2𝑘 (𝐴(𝑖+𝑘 : 𝑛, 𝑖+𝑘 : 𝑛), 𝑍, 𝑌 );
16: end for

parallelism within it. To gain a better understanding, we di-
vide the parallelism into two groups: the parallelism within
a single sweep and the parallelism between different sweeps.
the parallelism within a single sweep is straightforward

as the GPUs provide SIMT instructions. As the BC process
is iteratively performing Householder transformations, we
can let multiple threads handle with one transformation
in parallel. For example, line 11-13 shown in Algo 2 can be
computed quickly using one warp which contains 32 threads.

The combination of different sweeps constitutes the entire
bulge chasing process. We only launch 𝑛 − 2 thread blocks,
and each thread block handles one bugle-chasing sweep us-
ing the kernel described in Algorithm 2. The only concern
is determining how to synchronize those kernels. As ana-
lyzed previously, when the 𝑖-th sweep is handling the 4th
Householder transformation, the (𝑖 + 1)-th sweep can start
safely. However, since the GPU cannot guarantee that the
𝑖-th sweep will always complete 3 Householder transforma-
tions ahead, we must set up a lock to prevent the sweeps

from being executed out of order. This lock is implemented
using a volatile array and a while loop, as Algorithm 2 shows.
In short, the kernel for the (𝑖 + 1)-th sweep continuously
observes the working row of the 𝑖-th sweep and spins until
there is no data dependency between the 𝑖-th and (𝑖 + 1)-th
kernels.

Algorithm 2 One single sweep in bulge chasing

Input: A band formmatrix 𝐵 ∈ R𝑛×𝑛 with bandwidth𝑏 <<

𝑛 and 𝑖 is the sweep index
Output: Sweep down the 𝑖-th column to the right-bottom
1: volatile int 𝑔𝐶𝑜𝑚[𝑛] = 0;
2: % Setup a flag 𝑓𝑖 denotes the working row
3: 𝑔𝐶𝑜𝑚[𝑖] = 𝑖 + 1
4: for 𝑗 = 𝑖 + 1 : 𝑏 : 𝑛 do
5: while ((0! = 𝑖) && (𝑔𝐶𝑜𝑚[𝑖] + 2 ∗𝑏 > 𝑔𝐶𝑜𝑚[𝑖 − 1]))

do
6: Continue
7: end while
8: % Compute Householder vectors 𝑣𝑖
9: 𝐻 (𝑣𝑖 ) = 𝐼 − 2 𝑣𝑖 𝑣

𝑇
𝑖

𝑣𝑇
𝑖
𝑣𝑖

10: % Use 𝑣𝑖 to chase the bugle
11: 𝐵𝑑 = 𝐻 (𝑣𝑖 )−1𝐵𝑑𝐻 (𝑣𝑖 ) % 𝐵𝑑 is the diagonal block
12: 𝐵𝑜𝑙 = 𝐻 (𝑣𝑖 )−1𝐵𝑜𝑙 % 𝐵𝑜 is the off-band block on the

left side
13: 𝐵𝑜𝑑

′ = 𝐻 (𝑣𝑖 )−1𝐵𝑜𝑑 ′ % 𝐵𝑜 is the off-band block on the
down side

14: 𝑔𝐶𝑜𝑚[𝑖] = 𝑗 + 𝑏 % Update the flag 𝑓𝑖
15: end for

4.3 Back Transformation
Because of the same reason explained in Section 3.2, the
back transformation in SBR also suffers from low efficiency
in GEMMs. Assuming the orthogonal matrix 𝑄1 has already
been obtained from bulge chasing, the entire orthogonal
matrix 𝑄 is formed by:

𝑄 = 𝑄1 × (𝐼 −𝑊1𝑌
𝑇
1 ) × (𝐼 −𝑊2𝑌

𝑇
2 ) × · · · × (𝐼 −𝑊𝑛𝑌

𝑇
𝑛 ),

where𝑊𝑖 and 𝑌𝑖 are already formed by the QR factoriza-
tion in SBR. This back transformation process typically uses
the ormqr routine defined in LAPACK in the following or-
der: 𝑄 = 𝑄1 × (𝐼 −𝑊1𝑌

𝑇
1 ), 𝑄 = 𝑄 × (𝐼 −𝑊2𝑌

𝑇
2 ), . . ., 𝑄 =

𝑄×(𝐼−𝑊𝑛𝑌
𝑇
𝑛 ). Thus, the GEMMs in the back transformation

also always have dimensions equal to the bandwidth 𝑏. To
address this issue, we can consider combining successive
𝑊 matrices recursively, as shown in Algorithm 3 (line 12).
Specifically,𝑊𝑘+1 = [𝑊𝑘 | 𝑤𝑘+1−𝑊𝑘𝑌

𝑇
𝑘
𝑤𝑘+1]. The advantage

of this recursive algorithm is that it can produce much larger
and more square GEMMs, which can benefit more from mod-
ern GPUs. However, the disadvantage is that the recursive
algorithm requires forming the entire𝑊 matrix, whereas the
conventional back transformation does not. Consequently,
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the number of floating point operations also increases. We
will discuss optimization techniques in the following section
and evaluate whether the recursive algorithm can achieve
speedup.

Algorithm 3 Back transformation in DBBR
Input: Blocks of𝑊 and 𝑌 and orthogonal matrix 𝑄
Output: The eigenvector 𝑄

function [𝑊 ] = ComputeW(𝑊,𝑌 )
1: 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑊 );
2: if 𝑛 <= 2 ∗ 𝑏
3: 𝑊1 =𝑊 (:, 1 : 𝑏);
4: 𝑊2 =𝑊 (:, 𝑏 + 1 : 2 ∗ 𝑏);
5: 𝑌1 = 𝑌 (:, 1 : 𝑏);
6: 𝑊 = [𝑊1 |𝑊2 −𝑊1 ∗ 𝑌 ′

1 ∗𝑊2];
7: endif
8: % left recurse
9: 𝑊1 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑊 (𝑊 (:, 1 : 𝑛/2), 𝑌 (:, 1 : 𝑛/2));
10: % right recurse
11: 𝑊2 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑊 (𝑊 (:, 𝑛/2 + 1 : 𝑛), 𝑌 (:, 𝑛/2 + 1 : 𝑛));
12: 𝑊 = [𝑊1 |𝑊2 −𝑊1 ∗ 𝑌 ′

1 ∗𝑊2];
13: 𝑄 = (𝐼 −𝑊𝑌𝑇 ) ∗𝑄

5 Optimization
5.1 Optimizations on DBBR
One of the bottlenecks of DBBR is the suboptimal perfor-
mance of syr2k using cuBLAS. Firstly, cuBLAS syr2k ex-
hibits a performance degradation issue when the matrix size
is large. Secondly, even for smaller matrix sizes, syr2k can
achieve less than 50 TFLOPs on the H100 GPU, which is
significantly below the theoretical performance. To address
these issues, we designed our own syr2k routine, and the
steps are illustrated in Figure 7. Suppose we are computing
a matrix 𝐴 = 𝐴 − 𝑍𝑌𝑇 − 𝑌𝑍𝑇 with 4 × 4 blocks. In the first
iteration, we compute the diagonal 4 blocks, as shown in
the left graph of Figure 7. Next, we compute the two off-
diagonal blocks, as illustrated in the middle graph. After
two iterations, the resulting matrix is relatively more square
compared to the conventional blocking syr2k algorithm [23].
This GEMM shape is potentially more efficient on emerging
GPU architectures [27]. Additionally, note that all compu-
tations in Figure 7 are independent, allowing us to reorder
computations to hide latency and utilize idle GPU resources
more effectively.
To evaluate the performance, we compare the proposed

syr2k implementation with the cuBLAS Dsyr2k routine. The
results are shown in Figure 8. The proposed syr2k implemen-
tation outperforms cuBLAS Dsyr2k across various matrix
sizes. Notably, when 𝑛 ≥ 49152, the performance of the
cuBLAS syr2k routine drops significantly, while the perfor-
mance of the proposed syr2k remains stable.

Figure 7. The steps of computing SYR2K

Figure 8. The performance comparison between the pro-
posed SYR2K and cuBLAS SYR2K on H100 GPU

Figure 9. The band reduction performance comparison be-
tween MAGMA SBR and proposed DBBR with bandwidth
𝑏 = 64 on H100 GPU

Integrating SYR2K into DBBR enhances its performance,
particularly for large matrix sizes. To ensure a fair compari-
son, we restrict the matrix size to be less than 49152; other-
wise, the low efficiency of the cuBLAS syr2k routine would
overshadow MAGMA’s SBR performance. As shown in Fig-
ure 9, DBBR outperforms SBR, especially for large matrix
sizes, with an acceleration ratio of up to 3.1x.
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Figure 10. The explanation of how to reuse L2 cache

5.2 Optimizations on Bulge Chasing
Based on our performance analysis of BC on GPUs, BC is
expected to be faster on GPUs than on CPUs due to the
GPU’s ability to provide sufficient parallelism for supporting
asynchronous kernels during successive sweeps. To imple-
ment the GPU-based BC process, a straightforward approach
involves assigning each threadblock to handle one sweep
using Algorithm 2. Given that modern GPUs offer enough
number of Streaming Multiprocessors (SMs), even this basic
implementation can outperform the CPU-based BC. How-
ever, this naive approach incurs significant overhead due to
frequent data movement between global memory and the
L2/L1 cache, indicating potential for further optimization by
improving cache reuse.

To enhance L2 cache efficiency, we employ a simple strat-
egy illustrated in Figure 10. The entries of the original band
matrix are nonconsecutive in memory, leading to numer-
ous L2 cache misses. By storing these entries (taking ad-
vantage of the matrix’s symmetric property) in a different
memory space, we achieve consecutive memory access. Fur-
thermore, since the L2 cache on GPUs like H100 is relatively
large (50MB), nearly all elements can be stored within the
L2 cache, thereby reducing the need for expensive global
memory access.

For L1 cache or shared memory, the naive implementation,
which uses one threadblock to handle one sweep, cannot
take advantage of the L1 cache. This is because the data
between successive sweeps can be also reused. Thus, we can
group several sweeps together and make one warp instead
of one threadblock to process one sweep. In addition, extra
warp can also be invoked for prefetching to hide the data
movement between L2 cache and L1 cache.

We compare theGPU-based BC performancewithMAGMA
in Figure 11, and we can find that the naive implementation
can also have up to 5.9x speedup compared to MAGMA,
which conforms to the performance model (Section 3.3, Fig-
ure 5). With the above optimization techniques, the per-
formance can be even faster whose speedup is 12.5x when
the matrix size is large. Consequently, the BC process is no
longer a bottleneck (refer to Figure 4).

Figure 11. The performance comparison of BC between
MAGMA sb2st routine, the naive GPU-based BC and opti-
mized GPU-based BC on H100 GPU

1 2 4 8 16 32 64 max
Parallel Sweeps

0%

20%

40%

60%

80%

100%

M
em

or
y 

Th
ro

ug
hp

ut

0.63% 1.26% 2.52% 4.97%
9.71%

18.54%

32.92%

65.09%

Figure 12. The memory throughput of bulge chasing using
different number of parallel sweeps on H100 GPU; the max in
the X-axis means themax sweeps supported by the hardware.

Furthermore, to analyze the hardware utilization in BC,
we measured the memory throughput using Nsight Com-
pute 3, with the results presented in Figure 12. Our findings
demonstrate that increasing the number of parallel sweeps
in BC significantly enhances memory throughput. In other
words, greater parallelism in BC leads to higher memory
bandwidth utilization, thereby improving performance on
GPU architectures.

5.3 Optimization on Back Transformation
Although Algo 3 generates relatively square GEMMs, which
achieve higher TFLOPs on modern GPUs, the additional
computations required for the𝑊 matrix and the reduced
parallelism limit the performance of the back transformation.
To address this issue, we avoid forming the entire𝑊 matrix.
Instead, we generate several blocks of𝑊 incrementally, en-
suring that the dimension 𝑘 is sufficiently large to maintain
optimal performance.
3https://developer.nvidia.com/nsight-compute
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Figure 13. The steps of back transformation in DBBR

Figure 14. The performance comparison between MAGMA
and the proposed back transformation routine in band re-
duction with bandwidth 𝑏 = 64 on H100 GPU

Figure 13 explains the idea. Suppose the matrix size is
𝑛 × 𝑛, we have 𝑛/𝑏 blocks of𝑊 ∈ R𝑛×𝑏 initially. Then we
call batched GEMM to form the larger 𝑊𝑖 = [𝑊𝑖 |𝑊𝑖+1 −
𝑊𝑖𝑌

𝑇
𝑖 𝑊𝑖+1] in parallel recursively, until the size of𝑊𝑖 grows

to 𝑛 × 𝑘 . Afterwards, we follow the conventional ormqr rou-
tine to multiply the orthogonal matrix generated from the
BC back transformation.
Figure 14 shows the performance comparison between

MAGMA and the proposed back transformation in band
reduction (ormqr). We set the bandwidth 𝑏 to 64, because
MAGMA can have the best performance. In terms of the
elapsed time, even though the proposed method performs
extra computations on forming unnecessary𝑊 matrices, the
enlarged dimension 𝑘 (we select 𝑘 = 2048 in Figure 13) still
brings satisfied accelerations across various matrix sizes.

6 Experimental Evaluation
We conducted experiments on a system running a 5.4.0-99-
generic Linux operating system with NVIDIA H100-SMX
and RTX 4090 GPU. The CUDA version used is 12.5, which
includes a C++ compiler and the cuBLAS and cuSOLVER

(a) The tridiagonalization performance on H100 GPU

(b) The tridiagonalization performance on RTX 4090 GPU

Figure 15. Tridiagonalization performance comparison
among cuSOLVER, MAGMA, and the proposed method for
different matrix sizes. The numbers on top of the bars denote
TFLOPs, with the peak FP64 performance of the H100, and
RTX 4090 GPUs being 67 TFLOPs and 1.29 TFLOPs, respec-
tively

libraries. This section will primarily showcase the perfor-
mance of the proposed tridiagonalization and the entire EVD
on various GPU architectures.

6.1 Tridiagonalization Performance
Figure 15 compares the tridiagonalization performance be-
tween MAGMA (sy2sb and sb2st routines), cuSOLVER
(sytrd), and our proposed method (DBBR and GPU-based
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BC) on H100 and RTX 4090 GPUs. To achieve optimal per-
formance, we set 𝑏 = 64 and use 8 MKL threads for MAGMA,
while 𝑏 = 32 and 𝑘 = 1024 were selected for our proposed
method. On H100 GPU (Figure 15a), our method consis-
tently outperforms cuSOLVER across all tested matrix sizes,
whereas MAGMA’s 2-stage tridiagonalization demonstrates
superior performance only for large matrices. In terms of
computational throughput, our method reaches 19.6 TFLOPs,
significantly outpacing the performance of MAGMA and cu-
SOLVER, which are 3.4 TFLOPs and 2.1 TFLOPs, respectively.
These results underscore the superior performance of our
tridiagonalization approach on GPUs with high computa-
tional capacity.
We also conducted experiments on the RTX 4090 GPU,

yielding two key insights. Firstly, our method achieves a max-
imum of 1.4 TFLOPs, slightly exceeding the RTX 4090’s peak
performance of 1.29 TFLOPs. This result is attributable to the
acceleration provided by INT8 Tensor Cores [19], which nei-
ther MAGMA nor cuSOLVER can utilize. Secondly, despite
the relatively low double precision computing capacity of
the RTX 4090, our GPU-based BC significantly outperforms
MAGMA. The elapsed time, presented on a log scale (with
the bar height representing the ratio of SBR/DBBR to BC in
the tridiagonalization process), reveals that BC takes 213ms
vs. 209ms on a 4096×4096matrix, and 14327ms vs. 1839ms on
a 32768× 32768 matrix for MAGMA and our method, respec-
tively. This comparison highlights that BC performance is
more dependent on parallelism than on computing capacity.

6.2 End-to-End EVD performance
We integrate the divide and conquer method as implemented
inMAGMA to complete the entire EVDprocess. The speedups
of our proposed EVD method compared to cuSOLVER and
MAGMA are represented by the numbers along the blue and
red lines in Figure 16, respectively. When eigenvectors are
not required, our approach outperforms cuSOLVER, except
for matrix sizes smaller than 8192. This is because the divide
and conquer algorithm in cuSOLVER takes approximately 33
ms, whereas MAGMA requires 248 ms. For larger matrices,
our method delivers speedups of up to 6.1x and 3.8x over
cuSOLVER and MAGMA, respectively.
When eigenvectors are required, the limitations of the

2-stage tridiagonalization become apparent. Compared to
direct tridiagonalization, the back transformation process
in the BC process is significantly slower, consuming 61%
of the total elapsed time in our proposed EVD process and
36% in MAGMA’s process for a matrix size of 49152 × 49152.
Despite this drawback, our proposed tridiagonalization and
back transformation optimizations in DBBR enable our EVD
approach to maintain a slight performance advantage over
cuSOLVER for matrices larger than 8192.

(a) The EVD performance without eigenvectors

(b) The EVD performance with eigenvectors

Figure 16. EVD performance comparison among cuSOLVER,
MAGMA, and the proposedmethod. The numbers alongwith
the lines denote the speedups of our method compared to
cuSOVLER and MAGMA

7 Related Work
7.1 Tridiagonalization
Tridiagonalization is commonly performed using House-
holder transformations [12]. To enhance execution efficiency
on modern high-performance architectures, the WY repre-
sentation technique [3, 21] is often applied during the trans-
formation process. To further improve data locality, 2-stage
tridiagonalization [14] is frequently employed for larger ma-
trices and this method has been demonstrated to be highly
efficient on multi-core architectures [10, 16, 17]. Zhang et
al. [28] EVD using a 2-stage tridiagonalization approach on
FP16 Tensor Cores. However, their work focuses on com-
puting eigenvalues only and employs a low-precision SBR
implementation using the WY representation. Besides, their
claim regarding the ZY representation is incorrect. Com-
pared to our proposed method, their approach achieves low
speedup and has limited applicability.
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7.2 Symmetric Eigenvalue Decomposition
In this paper, we mainly discuss the optimization on large
tridiagonalization and EVD problem, and it has many ap-
plications among different disciplines including principle
component analysis [1], low rank approximation [29], tight
binding in condensed matter physics [15], quantum chem-
istry [6] and density function problems [4]. Solving large
dense eigenvalue problems in computational science often
involves using the ELPA library 4, which offers efficient so-
lutions for large matrices on distributed systems equipped
with GPU accelerators [18, 26].

The typically solution of EVD is tridiagonalization fol-
lowing an iterative method. QR algorithm [24], divide and
conquer [13], and Jacobi iterations [11] are the most popu-
lar iterative methods. Among these, the divide and conquer
method is particularly popular due to its superior parallelism
and efficiency in computing eigenvectors. For computing
eigenvalues alone, the QR algorithm is often the best choice.
These methods are implemented in most linear algebra pack-
ages, including LAPACK [2], MAGMA [22], and cuSOLVER.

8 Conclusion and Future Work
In this paper, we introduce a novel 2-stage tridiagonalization
algorithm that significantly outperforms the corresponding
routines in cuSOLVER and MAGMA. We begin by analyzing
the performance limitations of conventional 2-stage tridi-
agonalization, identifying the SBR and BC as critical bottle-
necks. Specifically, in the SBR process, the trailing matrix
update using syr2k underutilizes the computational capacity
of modern GPUs. To solve this, we propose a double block-
ing band reduction algorithm, which substantially enhances
performance. Additionally, we demonstrate that the BC pro-
cess, traditionally CPU-bound, can be efficiently accelerated
on GPUs, and we implement a GPU-based BC to further
boost performance. Our experimental results show that the
proposed tridiagonalization algorithm achieves up to 19.6
TFLOPs on H100 GPU, in contrast to the 2.1 TFLOPs and 3.4
TFLOPs attained by cuSOLVER and MAGMA, respectively.

We also evaluate the end-to-end EVD process using the di-
vide and conquer algorithm as implemented in MAGMA. Al-
though MAGMA’s EVD implementation is nearly 6x slower
than cuSOLVER, our approach delivers superior overall per-
formance, achieving speedups of up to 6.1x and 1.8x, de-
pending on whether eigenvectors are required. Besides, we
optimize the bank transformation in DBBR, yielding a further
1.6x speedup over MAGMA’s ormqr routine.

However, when eigenvectors are needed, the proposed
method doesn’t offer substantial speedup relative to cuSOLVER.
This limitation is primarily due to the back transformation
in BC, which dominates the computational time, spending
61% of the total execution time. Future work will focus on
optimizing this back transformation process.
4https://elpa.mpcdf.mpg.de/ABOUT_ELPA.html
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