422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

High Performance Householder QR Factorization on
Emerging GPU Architectures Using Tensor Cores

Yuhan Leng, Gaoyuan Zou, Hansheng Wang

Abstract—Since 2017, NVIDIA GPUs have been equipped
with specialized units known as Tensor Cores, which demon-
strate remarkable efficiency in processing matrix multiplications
(GEMMs). Beyond GEMMs, researchers have explored the poten-
tial applications of Tensor Cores in matrix factorization, such as
QR factorization. However, the inside GEMMs in QR factorization
are typically tall and skinny. Compared to compute-bound square
GEMMS, these tall and skinny GEMMs are memory bound, leading
to suboptimal performance on Tensor Cores. To solve this problem,
we indicate the recursive QR factorization can convert the tall and
skinny GEMMs to relatively square and large GEMMs, resulting in
better performance on Tensor Cores. Besides, we extend the FP16
Tensor-Cores-based QR factorization to accommodate FP32 and
FP64 on FP16 and INT8 Tensor Cores, respectively. Additionally,
to address the issue of orthogonality loss in the preceding Ten-
sor Cores-based QR factorization, we transition from the Gram-
Schmidt to the Householder algorithm while preserving high per-
formance. According to our experimental evaluation conducted on
NVIDIA’s A100 and GeForce RTX 3090 GPU, the precision levels
of FP64, FP32, and FP16 are up to 6.22x, 8.67x, and 4.03x faster,
respectively, than the current state-of-the-art implementations.

Index Terms—HPC, GPGPU, numerical linear algebra, tensor
cores, mixed-precision algorithms.

I. INTRODUCTION

HE GROWING demand for training large neural networks

has steered the modern GPU design towards low-precision
matrix engines. A noteworthy instance of such low-precision
matrix engines is Nvidia’s Tensor Cores, which outpaces FP32
(single precision) SIMT cores significantly. The evolution of
GPUs has been rapid in recent years, elevating the peak FP16
Tensor Cores’ performance from 112 TFLOPs to around 1
PFLOPs (refer to Table I for details). Furthermore, on the latest
A100 and H100 GPUs, FP64 (double precision) GEMM can
also be executed on Tensor Cores, delivering comparable speed
to SGEMM on FP32 SIMT cores.

Received 1 March 2024; revised 12 December 2024; accepted 17 December
2024. Date of publication 25 December 2024; date of current version 20 January
2025. This work was supported in part by the University of Electronic Science
and Technology of China startup under Grant A1098531023601465 and in part
by NSF CAREER under Award 2146509. Recommended for acceptance by B.
Ucar. (Corresponding author: Shaoshuai Zhang.)

Yuhan Leng, Gaoyuan Zou, Hansheng Wang, and Shaoshuai Zhang are
with the School of Computer Science and Engineering, University of Elec-
tronic Science and Technology of China, Chengdu 610054, China (e-mail:
202221080503 @std.uestc.edu.cn; 202322080434 @std.uestc.edu.cn; wanghan-
sheng @std.uestc.edu.cn; szhang94 @uestc.edu.cn).

Panruo Wu is with the Department of Computer Science, Univeristy of
Houston, Houston, TX 77004 USA (e-mail: pwu7 @uh.edu).

Digital Object Identifier 10.1109/TPDS.2024.3522776

, Panruo Wu'?, and Shaoshuai Zhang
TABLE I
THE GEMM PERFORMANCE (IN TFLOPS) OF DIFFERENT GENERATIONS OF
NvIDIA GPUS:
GPU Routine | pGENMM | SGEMM | TC-GEMM
P100 4.7 9.3 -
V100 7.0 14.0 112.0
A100 19.5 19.5 312.0
H100 67.0 67.0 989.0

In recent times, the utility of Tensor Cores has been extended
beyond deep neural network training/inference. Fundamental
numerical linear algebra operations, such as LU factoriza-
tion [1], QR factorization [2], and eigenvalue decomposition [3],
can also benefit from Tensor Cores. However, traditional algo-
rithmic designs for numerical linear algebra struggle to harness
a substantial portion of the peak performance from Tensor Cores
due to their exceptionally fast computations, turning data move-
ment into a bottleneck for conventional tiling-based algorithms.
To address this challenge, Tensor-Cores-based QR factoriza-
tion [2] combines tall and skinny QR factorization ([4]) and
recursive Gram-Schmidt QR factorization to achieve superior
performance on Tensor Cores. It also introduces the use of the
conjugate gradient descent method for solving linear least square
problems (CGLS) to handle accuracy loss issues stemming from
FP16 Tensor Cores.

Nevertheless, there are several drawbacks to the mentioned
Tensor-Cores-based QR factorization. The Gram-Schmidt QR
factorization often induces a loss of orthogonality, and while
the re-orthogonalization technique can partially restore orthog-
onality, it requires twice the computations. Additionally, the
re-orthogonalization process falters when the matrix is ex-
tremely ill-conditioned. Furthermore, in the context of linear
least squares problems involving matrices with high condition
numbers, employing low-precision QR factorization as a precon-
ditioner within the Conjugate Gradient Least Squares (CGLS)
method generally requires an increased number of iterations. In
some cases, this approach may even fail to achieve convergence.

To overcome these challenges, we first replace the Gram-
Schmidt QR factorization with Householder QR factorization
to preserve orthogonality. Second, we extend the precision of
QR factorization from FP16 to FP32 and FP64 to handle more
complex tasks.

Thus, the contributions of this paper can be summarized as
follows:

1045-9219 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0006-0035-2323
https://orcid.org/0000-0003-1859-3580
https://orcid.org/0000-0002-9525-1659
mailto:202221080503@std.uestc.edu.cn
mailto:202322080434@std.uestc.edu.cn
mailto:wanghansheng@std.uestc.edu.cn
mailto:wanghansheng@std.uestc.edu.cn
mailto:szhang94@uestc.edu.cn
mailto:pwu7@uh.edu

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES 423

® We conduct a thorough analysis and evaluation of the
performance bottleneck of Householder QR factorization
on Tensor Cores.
® Weimplement and optimize Householder QR factorization
with FP64, FP32, and FP16 precision on different types of
GPUs, demonstrating superior performance compared to
state-of-the-art QR factorization in the cuSOLVER library.

® We demonstrate that compared to the FP16 Gram-Schmidt
QR factorization, the proposed FP16 Householder QR
factorization is more stable in solving linear least square
problems.

The remainder of this paper is organized as follows: Section II
delves into related work concerning Tensor Cores technology
and QR factorization. Section III furnishes background knowl-
edge on Householder QR factorization and its recursive formu-
lation. In Section IV, we dissect the performance bottleneck
of Householder QR factorization, while Section V introduces
our implementation and optimization techniques. Section VI
presents the experimental results of QR factorization and its
applications. Section VII concludes the paper and outlines our
future work.

II. RELATED WORK

A. Tensor Core Technology

Tensor Core technology was introduced by NVIDIA in 2017
on its Tesla V100 GPU [5] with the aim of accelerating mixed-
precision GEMMs, thereby improving the efficiency of the train-
ing/inference process in deep neural networks. Presently, Tensor
Cores have been incorporated into NVIDIA’s Turing, Ampere,
and Hopper architectures. In the second generation of Tensor
Cores, NVIDIA introduced INT8 on its Turing architecture,
significantly boosting inference throughput and yielding sub-
stantial efficiency increments [6]. On the latest Hopper Tensor
Cores, its INT8 Tensor Cores exhibit a performance 6x faster
than FP16 Tensor Cores on Ampere [7], [8]. Early research on
Tensor Cores [9], [10], [11] includes performance modeling,
architectural exploration, and implementations.

Initially, Tensor Cores found common application in training
and inference for deep neural networks. For instance, Zhu et
al. [12] proposed new instructions and microarchitectural opti-
mizations on Tensor Cores to enhance their suitability for accel-
erating sparse neural networks. Furthermore, researchers have
introduced a computational framework for quantized graph neu-
ral networks based on Tensor Cores [13], significantly improving
inference efficiency. Additionally, Feng [14] introduced a neural
network framework capable of arbitrary precision, combined
with Tensor Cores, resulting in substantial acceleration.

Recently, researchers have extended the usage of Tensor
Cores beyond deep learning to other fields. Numerical lin-
ear algebra, in particular, stands to benefit significantly, as
its internal GEMMs can be directly replaced by GEMMs on
Tensor Cores. Utilizing Tensor Cores in LU factorization [1],
[15] and QR factorization [2] has led to a significant speedup
at the cost of some accuracy loss. Researchers have adapted
iterative methods, including GMRES and CGLS, to restore

accuracy to high precision. Other types of computations us-
ing Tensor Cores include FFT [16], reduction and scan [17],
stencil computations [18], and support vector machines using
low-rank approximation [19]. Notably, in terms of recover-
ing accuracy loss from low-precision Tensor Cores, Ootomo
implemented SGEMM [20] and DGEMM [21] on FP16 Ten-
sor Cores and INT8 Tensor Cores, respectively. The Tensor-
Cores-based SGEMMs (TC-SGEMMs) and DGEMMs (TC-
DGEMMs) exhibit the same accuracy as conventional SGEMMs
and DGEMMs while surpassing the theoretical FP32/64 peak
performance. TC-SGEMM was adopted in eigenvalue decom-
position [22], demonstrating superior performance compared to
MAGMA [23] and cuSOLVER.

B. OR Factorization

The QR factorization holds a pivotal role in data analysis
and scientific engineering, addressing tasks such as orthogo-
nalization, low-rank approximation [24], and two stage eigen-
value/singular value decomposition [25], [26]. For instance, in
QR-based Singular Value Decomposition (QR-SVD), QR fac-
torization helps obtain orthogonal matrices and upper triangular
matrices, improving the efficiency of computing the singular
value decomposition on a tall and skinny matrix [2].Various
classical QR factorization algorithms exist, each with its own
characteristics. Householder QR factorization, deemed the most
stable method, utilizes Householder reflection to derive the
orthogonal basis. Classic/modified Gram-Schmidt QR factor-
ization, while less stable, exhibits improved parallelism and
lower time complexity. QR factorization using Givens rotation
achieves excellent orthogonality, particularly targeting sparse
matrices. However, traditional QR factorization methods face
challenges in achieving optimal performance when dealing with
tall and skinny matrices, ill-conditioned matrices, and singular
matrices. Moreover, they encounter limitations in maintaining
matrix orthogonality and exposing locality, prompting extensive
research efforts to address these issues.

In-depth investigations into the QR factorization of tall and
skinny matrices have been conducted [27], exploring critical
paths and algorithmic performance. The Cholesky QR method’s
advantages in terms of orthogonalization and numerical stability
are discussed in [28], where algorithmic performance is fur-
ther enhanced through the incorporation of mixed precision.
Building on Cholesky QR, [29] extends the shifted Cholesky
QR3 algorithm by introducing shifts into the computation of the
Gram matrix, resulting in an algorithm with superior numerical
stability and parallelism, particularly effective for matrices with
large condition numbers. Additionally, [30] proposes a solution
to the performance limitation in Householder QR factorization
with column pivoting by selecting axis vectors through random
projection, achieving significant acceleration. Researchers have
explored avenues to overcome the performance bottlenecks of
QR decomposition from other perspectives, as demonstrated
in the communication-avoiding rank-revealing QR factorization
algorithm called CARRQR [31], which reduces data transmis-
sion for improved speed.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

With the advent of GPUs, substantial research efforts have
been dedicated to leveraging GPU parallelism for acceler-
ated factorization calculations, surpassing the performance of
standard numerical computation libraries like LAPACK [32]
and Intel MKL. Evaluations of five different LU factorization
and QR factorization implementations on CPU and GPU [33]
are conducted, yielding in-depth analyses. To enhance GPU
parallelism utilization, GPU-based tall and skinny QR factor-
ization is proposed on CUDA cores [4] and Tensor Cores [34].
MAGMA’s [23] QR factorization routine employs a hybrid
algorithm performing panel factorization on CPU while up-
dating trailing matrices on GPU, demonstrating competitive
performance relative to cuSOLVER,' a likely state-of-the-art
implementation on GPUs for general matrices.

III. BACKGROUND

QR factorization is one of the most vital matrix factorizations
in numerical linear algebra. Its derived applications include
Linear Least Squares (LLS) Solver and Low-Rank Approxi-
mation (LRA), and these applications play important roles in
real-world problems. QR factorization aims to factorize a matrix
to a product of an orthogonal matrix () and an upper triangular
matrix R, and it’s almost always an important building block
of any numerical linear algebra packages such as LAPACK,
ScaLAPACK. On GPU, Nvidia provides a well-optimized linear
algebra library named cuSOLVER,? containing LU, QR, SVD
and EVD. MAGMA is a more comprehensive tool that works on
hybrid CPU/GPU architecture. The most performant and stable
algorithm (used in all the above-mentioned packages across
different architectures: distributed memory, multi-core, GPUs,
and single-core CPU) is the tiled Householder QR factorization.
We will typically use D/ SGEQRF to denote such implementation
in double and single precision Generalized QR Factorization
from cuSOLVER. o

Mathematically, QR factorization (thin version) is a matrix
decomposition technique that decomposes a matrix A into a
product of an orthonormal matrix Q (Q7Q = I) and an upper
triangular square matrix R:

A = Q X R
~~ ~— ~~

mxn,m>n mxn,orthonormal X7, upper triangular

In general, there are three basic algorithms to perform QR
factorization: Gram-Schmidt process, Householder reflection,
and Givens rotation. Among them, Givens rotation is normally
used for sparse matrices or matrices with special structure, so we
are only focusing on Gram-Schmidt and Householder reflection
as the base background of QR factorization in this paper.

A. Conventional QR Factorization Algorithms

1) Gram-Schmidt QR Factorization: The Gram-Schmidt
process aims to find a set of orthonormal vectors in an inner

Uhttps://docs.nvidia.com/cuda/cusolver/index.html
Zhttps://docs.nvidia.com/cuda/cusolver/

product space. Given an array of linear independent vectors
[a1]az|as]. . .|an], the Gram-Schmidt will find the orthonor-
mal basis one by one. Then the set of orthonormal vectors

[q1lq2]q3]- - -|gn] is given by (1).

q1 = uy/||ug]|
q2 = ua/||uz||
q3 = uz/||us||

uyp = a,
U2 = A2 — PI'Oju1 (CLQ),
uz = as — Projul (a3) - Projug (a3)7

n—1
Up = Ap — Z PI‘Ojuj (an)v qn = un/'lun”
=1

j=

in which Proj,, (a) = uu”a = u(uTa) is the orthogonal projec-

tion of vector a onto unit vector u. We also obtain R during the
Gram-Schmidt process: 7;; = qiT a;.

Depending on the evaluation order of the procedure described
in (1), there are two mathematically equivalent but numer-
ically different variants called classic Gram-Schmidt (CGS)
and modified Gram-Schmidt (MGS). CGS executes row by
row in (1), whereas MGS subtracts Proj,, (a;) from a; for all
j > as soon as u; is computed. MGS can be visualized as
evaluating (1) with row and column interleaved. This subtle
difference has important implications in numerical stability and
parallelism exposed. MGS is more stable but less parallel [35].
The block-based computation in MGS is less efficient, requiring
additional communication overhead, and fails to fully exploit the
computing capacity of modern hardware architectures (e.g., the
excessive use of BLAS2 operations). Recently, several variants
of the Modified Gram-Schmidt (MGS) algorithm have been pro-
posed to enhance parallelism and achieve performance similar
to Classical Gram-Schmidt (CGS). For example, Left-Looking
MGS improves parallelism at the cost of stability, while MGS2
and MGS+ increase parallelism by adding extra floating point
operations [36].

The Gram-Schmidt process, as presented above, is inefficient
on a hierarchical memory system due to the low data locality
of vector-matrix operations. To enhance locality, blocking must
be employed, allowing the orthogonal projection of multiple
vectors onto multiple orthonormal vectors to be performed in one
shot. Classical Gram-Schmidt (CGS) can be trivially blocked,
as it can be directly “upgraded” into a blocking algorithm by
considering the vectors a;, u; not as individual vectors but as
a block matrix (a group of column vectors). Modified Gram-
Schmidt (MGS), on the other hand, is not straightforward to
block.

2) Householder QR Factorization: The Householder reflec-
tor is an orthogonal projection constructed from reflection
against a hyperplane. It is useful to orthogonally transform a
given vector to an axis (thereby eliminating all components
but one). Specifically, given a vector x, the orthogonal matrix
H(v) = I —2vvT/(vTv) where v = ||z||e; — x will map =
to the first axis: H(v)x = [||z,0,...,0]T. Householder QR
algorithm orthogonally eliminates the below-diagonal elements

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusolver/

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES 425

TABLE II
CANONICAL COMPLEXITY AND STABILITY COMPARISON WITH CGS, MGS
AND HOUSEHOLDER

Algorithm CGS MGS Householder
FLOPS 2mn? 2mn? 2mn? — Zn3
Backward Error Bound O(e) Ol(e O(e)
Orthogonality Error Bound ~ O(ex™ 1(A)) O(er(A)) O(e)
Backward Error Bound O(e) O(e) O(e)
Reorthogonalization 4mn? 4mn?

4.3

Generating Explicit Q 4mn? — gn

Complexity is #flops for unblocked versions.

of A column by column, by successively pre-multiplying House-
holder reflections; see (2).

1ok e X 11 Tiz vk
0 * * 0 799 *
H{A= JHyH A = .
0 = * 0 0 *
11 T2 Tin
0 7o Ton
) HnH2H1A: . =R
0 0 Tnn
(2)

At the final stage, we have the QR factorization with orthog-
onal Q=H{H]---HT.

In practice, pre-multiplying a Householder matrix with a
matrix H x A is inefficient on hierarchical memory system
due to low data locality, since H x A = (I —2v0vT)A = A —
2v(vT A) involves only vector-matrix operations. To improve
data locality, a technique called blocking must be used to group
several Householder reflectors into a single matrix application:
H.Hi_1...H =1—-WYT, where W,Y € R"¥; ref WY
representation in [22]. This is critical in achieving high per-
formance of Householder QR.

3) Comparison: Table Il illustrates the distinctions (in terms
of complexity and stability) between the canonical CGS, MGS,
and Householder QR factorization. It is worth noting that while
some references [37] point out that the orthogonality error of
CGS is typically constrained by the square of the condition
number, this is not contradictory to other references. The orthog-
onality error of CGS generally only worsens to O(ex(" 1) (A))
in cases of high matrix dimensions or poor numerical condition-
ing [36], [38], [39]. To address this issue, common variants like
CGS-P leverage geometric relationships between vectors, which
help mitigate floating-point calculation errors and improve nu-
merical stability to O(ex?(A)). In summary, the differences
among these QR algorithms are as follows: Householder QR
is stable, but its) factor is implicit, as computing the exact
Q incurs additional computational cost. MGS is more stable
than CGS, but requires more communication when performing
block-wise computation.

Due to roundoff errors, the numerical system does not com-
pute exact QR factorization. To measure the accuracy of the fac-
torization results, two errors are considered. The first one is the

lA-QR]|
(1A

factorized and Q and R are the factorization results. CGS, MGS,
and Householder QR factorization exhibit the same backward
error bound, which is the machine €. Another measurement is
orthogonality, which gauges how orthogonal Q is and is denoted
as ||I — QTQ||. The orthogonality error bound for the original
versions of CGS and MGS is worse than that for Householder,
implying that CGS and MGS methods may struggle with real ill-
conditioned systems. Fortunately, with continued improvements
to the Gram-Schmidt algorithms, according to [36], certain
variants can achieve the same level of accuracy as Householder
QR under specific conditions, or attain comparable stability
through reorthogonalization. A detailed analysis of the errors
will be presented in the experiments section.

backward error, denoted as , where A is the matrix to be

B. Recursive Formulation

The state-of-the-art implementations in LAPACK [32] and
MAGMA [23] consistently employ tiling Householder QR fac-
torization (WY representation). This preference arises because
Householder QR factorization is more cost-effective than Gram-
Schmidt QR factorization when the orthogonal matrix @ is not
needed. Additionally, Householder reflection ensures orthogo-
nality during the factorization process. However, in the context
of using Tensor Cores, especially FP16 Tensor Cores, the tiling
algorithm may not fully harness the power of Tensor Cores, due
to its application in dimension-limited tall and skinny matrices,
where the arithmetic intensity is constrained. A detailed per-
formance analysis and data will be presented in Section IV.
Consequently, recent research [2], [3] explores methods not
typically considered on modern computer architectures, such as
recursive QR factorization and WY-based Eigenvalue decom-
position. These methods provide reasonable shapes of General
Matrix-Matrix Multiplications (GEMMSs) for acceleration on
Tensor Cores, albeit at the cost of increased computational
complexity.

In terms of QR factorization, the process of recursive Gram-
Schmidt QR factorization is assembled as follows:

o] G)

(1142 = @1]s] R e

Given a matrix A, we divide evenly its columns into two
halves, denoted by A = [A;|As5]. We first QR factorize the first
half A; = Q1 R11, and then compute north-east quarter Ryo =
QT A,. Next we update the second half Ay = Ay — Q1 Ry». Fi-
nally, QR factorize the updated second half As = Q3 Ros. Note
that the QR factorization of the two halves can be further divided
into another two recursions. There is no additional computation
introduced during the recursion process.

The recursive formulation becomes more intricate when it
comes to Householder QR factorization, as the WY representa-
tion has to be reformed during the recursion, thereby introducing
additional computations:

A1:Q1XR1:(I—W1XY1T)XR11
AQZAQ—Y1><W1TXA2

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

426 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

__R12
Ag__AJ
AQZQQXRQZ(I—WQXYQT)XRQQ
[0
wg___Wz}
[0
Y—Y—}
W= [Wyi| =W x YL x Wy + Ws]
Y =V |Y3]
| R | Rae
R{O Rﬂ} “4)

Note that in the recursive formulation shown in (4), the entire
W is not necessary to be formed if () is not needed. However,
W, generated from factorizing A; still have to be fully formed
before updating As, which leads to around 1.5x the number
of mathematical operations compared to the tiling Householder
algorithm.

C. Tall and Skinny QR Factorization

The conventional panel factorization involves sequentially
dependent iterations, and the working set is the entire panel,
which cannot fit in fast memory on GPU (register files + shared
memory). Fortunately, for QR, there’s a tall and skinny QR
(TSQR) [4] variant that simultaneously improves parallelism
and data locality, at the cost of more computations. The idea of
TSQR can be illustrated in (5).

Ay [Qu1 Ry Q1 R,
Ay a Q121 a Q12 Ry
As Q13R3 Q13 R;
Ay |Q14R4 Qia] R4
[Q11 Q21
! Q12 Q22 R
Q13 Q23
L Qa] Q24
[Q11Q21
a [Q12Q2 @)
< R=QR @)
Q13Q23
| Q14Q24

In (5), there are five steps indicated by the numbers over the
equality sign. In step , we divide a tall matrix A evenly into four
smaller matrices (still tall, more rows than columns), and QR
factorize them independently. In step , we stack the R factors
vertically. Note that the number of rows of the R factors is less
than the number of rows of the original A. In step , we factorize
the vertically stacked Rs (potentially carrying out this process
recursively). In , we perform four matrix-matrix multiplications
for the four corresponding () factors. In, we reinterpret the result

as the QR factors of the original A. The reason () is orthogonal is
thatin step , the four matrix-matrix multiplications are equivalent
to the product of two orthogonal matrices (second line) and,
therefore, is orthogonal [2].

D. SGEMM and DGEMM on Tensor Cores

According to the research by Ootomo et al. [20], [21], it
is possible to perform SGEMMs and DGEMMs on Tensor
Cores without any accuracy loss. Since the technology of TC-
SGEMMs and TC-DGEMMs is not the same, we will introduce
the background separately.

1) SGEMMs on FP16 Tensor Cores: The accumulation pro-
cess in matrix multiplications on FP16 Tensor Cores can be
executed using FP32 precision. This feature allows us to recover
the accuracy loss by performing two additional TC-GEMMs:

Appsa X Brppzs = (Arpis + AAppig)
x (Brpic + ABrpig)

Compared to the original single FP32 matrix multiplication, this
formula requires performing four FP16 multiplications and three
FP32 additions. Note that the TC-GEMM AArpig X ABrpig
can be bypassed as it’s trivial for the final results.

Theoretically, with the above equation, the accuracy loss can
be recovered. However, based on experimental results [20], [40],
this method cannot work when the matrix size, especially when
k, is large. Ootomo et al. [20] investigate the error behavior
in-depth and figure out that the accumulations inside Tensor
Cores are rounding to zeros instead of rounding to the nearest.
Therefore, when k is large, the rounding errors are accumulated
and cannot be recovered at all.

To solve the error from rounding to zeros, the authors design
their own wmma kernel® and change the rounding behavior inside
Tensor Cores to nearest rounding. Finally, the accuracy loss is
recovered using FP16 Tensor Cores. On the A100 GPU, the
peak FP16 Tensor Core performance can reach 312 TFLOPS,
while the FP32 peak performance is 19.5 TFLOPS. Therefore,
even though our implementation introduces extra computational
and communication overhead for storing and reading FP16
matrices, the achieved FP32 matrix multiplication performance
still exceeds the theoretical FP32 peak performance on the A100
GPU by over 2x.

2) DGEMMs on INTS8 Tensor Cores: Different from the
TC-SGEMMs, the FP16 Tensor Cores don’t support accumu-
lations with FP64 precision; otherwise, the aforementioned
method could also work on FP64 precision. As a result, Ootomo
et al. [21] abandon the above method and use INT8 precision to
simulate FP64 numbers by splitting FP64 numbers into several
blocks. Note that as the numbers may not occupy all 64 bits, the
authors search the range of the numbers and calculate the min-
imal length of INTS arrays to reduce the number of arithmetic
operations. Experimentally, on emerging GPUs such as RTX

3The term “wmma kernel” refers to a specialized CUDA kernel utilizing
the Warp Matrix Multiply-Accumulate (WMMA) operations to accelerate ma-
trix multiplications using Tensor Cores. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES

427

TABLE III
PERFORMANCE COMPARISON (IN TFLOPS) BETWEEN TC-GEMMS, TC-SGEMMSs AND SGEMMSs oN A100 GPU, DGEMMs AND TC-DGEMMSs ON RTX 4090
GPU WITH THREE TYPES OF GEMM SHAPES AND SIZES

GEMM Shape Routine 32 64 128 256 512 1024 2048 4096 8192 16384 32768
® — D TC-GEMM 0.005 0.028 0293 2048 13.11 5825 111.8 2161 259.8 2383 1873
B B = TC-SGEMM 0.005 0.030 0273 2340 7.085 10.87 3258 40.68 44.05 3929 3874
(n,n,n) SGEMM 0.006 0.032 0315 1.638 6.899 1479 17.57 19.16 19.06 19.12 19.15
DGEMM 0.0002 0.001 0.012 0.082 0453 0917 1.093 1240 1241 1.242 -
TC-DGEMM 0.0002 0.001 0.010 0.073 0411 0560 2.120 4374 7.042 9.109 -
— D TC-GEMM 2720 5255 8993 1613 2346 259.6 2179 251.6 2744 269.1 187.3
x = TC-SGEMM 17.01 25.65 31.98 3478 3844 4083 41.86 39.09 3877 3793 3874
(215,215 k) SGEMM 1721 1824 1871 19.00 1898 1823 1828 19.12 19.15 19.08 19.15
DGEMM 1295 1.169 1.170 1.187 1226 1235 1238 1241 1242 1242 -
TC-DGEMM 1291 1.169 1205 1266 1235 1412 2987 - - - -
— D w=] TC-GEMM 0.736 2759 8525 8.648 5377 1055 163.8 231.1 2632 2845 1873
® -— TC-SGEMM 2.185 3.318 7.944 11.68 13.71 1278 3434 43.60 4356 3891 38.74
(n,n,219) SGEMM 0.006 0.032 0315 1.638 6.899 1479 1757 19.16 19.06 19.12 19.15
DGEMM 0.017 0.062 0260 0.795 1.102 1.122 1245 1235 1228 1.241 -
TC-DGEMM 0.016 0.071 0271 0.777 1.093 3561 4.810 9.539 9.839 9.633 -

The dimensions (m,N, k) indicate that a matrix of size m x k is multiplied by a matrix of size k x n, resulting in a matrix of size m x n.

4090 and RTX 3090, whose FP64 precision computing capacity
is limited, the proposed TC-DGEMMs can reach around 7x
speedup compared to theoretical FP64 peak performance.

E. The Proposed Householder QR Algorithm Workflow

Building upon the improvements and the identified strengths
and weaknesses of the existing methods discussed above, this
section outlines the workflow of the proposed Householder QR
optimization approach. The underlying optimization principles
will be comprehensively detailed in the following sections on
performance analysis and implementation.

Depending on the computing capacity of the hardware, we
propose two algorithms (tiling/recursive) for different hardware
and precisions. For GEMMs that benefit from Tensor Cores for
improved performance, the recursive algorithms are preferred.
This choice is based on the sensitivity of TC-GEMMs and TC-
S/DGEMMs to matrix shapes and sizes, as indicated in Table III.
For GEMMs that do not utilize Tensor Cores, the tiling algorithm
is considered to enhance parallelism. Algorithm 1 illustrates
the workflow of the proposed QR factorization algorithm, with
the tiling algorithm presented in a recursive manner for better
comparison to the recursive approach. It is noteworthy that in the
tiling method, the calculation of W (line 16) is necessary only if
@ is needed. Additionally, generating Q requires extra GEMMs,
which may result in significant additional time overhead.

The Algorithm 1 makes it clear that the selection between the
two variants depends on whether TC-GEMMs, TC-SGEMMs,
and TC-DGEMMs are involved. If these Tensor Core opera-
tions are not required, meaning that the GEMM shapes and
sizes do not significantly impact performance, the tiling variant
will be chosen, and vice versa. From a hardware perspective,
for instance, on A100 and H100 GPUs, the FP16 and FP32
precisions will use the recursive variant, while FP64 precision
QR factorization will use the tiling variant, as TC-DGEMMs
perform worse than primal DGEMMs on A100. However, for
other new generation GPUs like RTX 3090, RTX 4090 and

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

A6000, the FP16 and FP64 precisions will adopt the recursive
variant to obtain better inside GEMM shapes and sizes.

IV. PERFORMANCE ANALYSIS
A. Trailing Matrix Update Performance

Table III displays a performance comparison between
DGEMMs, DGEMMs using INT8 Tensor Cores (TC-
DGEMMs), SGEMMs, SGEMMs using Tensor Cores (TC-
SGEMMs), and Tensor-Cores-based GEMMs (TC-GEMMs). It
is evident from the table that the TC-GEMMs, TC-SGEMMs
and TC-DGEMMs require larger matrix sizes to reach peak
performance, indicating that the performance of GEMMSs on
Tensor Cores is more sensitive to matrix shapes than SGEMMs.

The performance discrepancies between normal GEMMs and
GEMMs on Tensor Cores arise from the exceptionally fast cal-
culations facilitated by Tensor Cores. As the input and output are
FP32, the data movements between registers, shared memory,
and device memory remain the same. However, when calcula-
tions are extremely fast, data movements can become the bot-
tleneck. This scenario is explicated by the roofline model [41]:

w
Q)
where W is the number of arithmetical operations (expressed as
FLOP) and (is the memory traffic (expressed as bytes). For a
given GEMM size m, n, k, the arithmetic intensity (/) of square
GEMMs (m =n=k) is %n, and the arithmetic intensity of
matrix outer product (m = n, n >k) is nzfgk The arithmetic
intensity of the matrix inner products (m = n, n < k) is the
same as that of matrix outer products, but with a much smaller n
compared to k. It is evident that square GEMMs, given the same
n, generally have the highest arithmetic intensity, while inner
products typically have the lowest due to their much smaller n
compared to k.

More specifically, for QR factorization, the main differ-
ences between conventional tiling algorithm and recursive al-
gorithm are the GEMM shapes. For the tiling algorithms, the

I =

428 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

Algorithm 1: The Workflow of Proposed QR Factorization
on Different Conditions.
1: function QR A >Return W,Y, R s.t.
A=I-WYDR

2: Aism X n matrix

3: if n < nbthen

4: return PanelQR(A)
5. endif

6:

Divide the columns of Q = I — WY into two
partitions, and A, R into quadrants

7: if Tensor Cores cannot provide acceleration (when
m > nb) then

ni n—mni

—— — nb n-—nb _
A | cAis }: [’é\‘/\] Ry | Rio
| A2 | ' | A22 b Ras |
A
9: [W15Y17R11]QR(|:A11 :|>
21

(A] A1
10:
A, O {Am
11: ng = A12
A
12: [Wa, Y2, Rao]=QR <{A;z])

13: W2 = —lelTWQ + W2

T
7 T 12
]—(I lel){AQQ_

14: return [|[Ws], [Y1|Ya], [Rn 212}
22
15: else N
s
~~ ~~ [R R
16: 11 ¢z | = -
Ao | [| =1 19 [T,

17: (W1, Y1, R11]=QR ([ﬁ“ D
21

(Ao] 7 | A2
18: = - WY,

A22<—Q1|:] (11){1422]
19: Rip = Ao

A
20: [Wa, Y2, Ro2]=QR ({Alz })
22

210 Wy = —WiY Wy + W,
22: return [W7|Ws], [Y1|Ya], [RH

23: endif
24: end Function

A12
A22

f312}
Ras

GEMMs typically involve tall and skinny matrices, and these
GEMMs cannot fully extract the peak performance of FP16
Tensor Cores. In contrast, the recursive formulation provides
relatively square GEMMs, which can potentially improve the
utilization efficiency of Tensor Cores. Fig. 1 shows the inside
GEMMs performance in Householder QR factorization (matrix
size 32768 x 32768) using tiling/recursive variant on RTX 4090
GPU. These GEMM operations serve the overall QR decomposi-
tion process. Inemploying a tiling variant for GEMM operations,
the matrices are typically tall and skinny, with the number of
columns fixed to a certain size (as illustrated in Fig. 1, where
we selected 128, a commonly-used tile size). Consequently, the
data intensity of the GEMMs is insufficient to fully utilize the

180

—Recursive —Tiling
160
140

120

Fig. 1. The inside TC-GEMMs performance comparison between recursive
and tiling Householder QR factorization.

peak performance of the Tensor Cores. The performance of the
GEMMs, indicated by the red line in Fig. 1, consistently remains
around 40 TFLOPs during the iteration steps, compared to the
peak performance of the RTX 4090, which is approximately 160
TFLOPs.

In contrast, the aforementioned dimension in recursive variant
is not fixed and it depends on the recursion depth. The blue
line displays GEMMs performance in recursive Householder
QR factorization, we can observe that the performance fluctu-
ates dramatically along the recursion steps because the GEMM
shapes change rapidly in the recursive variant. However, we can
find in most of the steps, the TFLOPs in recursive variant is lower
than in tiling variant. Fortunately, these GEMM:s typically have
much smaller size than those GEMMs which have much higher
TFLOPs. Quantitatively, in terms of the number of mathematical
operations, only less than 10% of the computations are executed
slowly, while the more expensive GEMMs can be computed over
100 TFLOPs, leading to a better utilization of Tensor Cores in
Householder QR factorization.

B. Panel Factorization Performance

Unlike the trailing matrix update, panel factorization (QR
factorization of a matrix A € R™*™, where m > n) is typically
memory-bound rather than compute-bound. Based on the exper-
imental testing using MAGMA dgeqr £ routine, although panel
factorization generally accounts for less than 10% of the total
FLOPS, its time cost can constitute over 30% of the total elapsed
time. Regrettably, current state-of-the-art implementations often
treat panel factorization as a standard QR factorization, resulting
in considerable overhead. Fortunately, tall and skinny QR factor-
ization demonstrates the potential to significantly expedite the
panel factorization process. Fig. 2 illustrates the elapsed time
for QR factorizing a matrix with dimensions m x 32 on a RTX
4090 GPU. It is evident that for sufficiently large values of m,
tall and skinny QR factorization outperforms the cuSOLVER
SGEQRF routine by approximately a factor of 10x.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES 429

® TSQRQ0 @ SGEQRF()
40.00

g .y 32.68
Fits in cache Doesn’t fit in cache)
30.00
A
< 2000 16:25
E
= °
7.93
10.00
3.69 L4 3.98
. - 1.60 g . 224
043 0.58 0.92 4:83 0g1 1.28 .
0.00 a a []] [] LJ °
4096 8192 16384 32768 65536 131072 262144 524288

m

Fig. 2. m x 32 tall-skinny matrix factorization: recursive TSQR QRO vs.
cuSOLVER SGEQRF on RTX 4090 GPU.

V. IMPLEMENTATION AND OPTIMIZATION

Building on the performance analysis outlined above, we
propose a hybrid approach that combines the recursive and
TSQR variants based on the desired precision. In this section,
we will detail our implementations and optimization techniques
for FP64, FP32, and FP16 precision.

A. Panel Factorization Implementation

Building on the performance analysis of panel factorization
discussed earlier, it is evident that regardless of the required
precision, the tall and skinny QR factorization consistently out-
performs conventional panel factorization. Consequently, this
section will concentrate on the optimization of the tall and skinny
QR factorization (TSQR) and the subsequent reconstruction of
the WY representation after TSQR.

1) Tall and Skinny Panel QR Factorization: The TSQR al-
gorithm discussed in the performance analysis appears to offer
two distinct advantages:

1) Reduced Data Movement: Particularly beneficial when the

panel QR does not fit in shared memory.

2) Shortened Critical Path: It effectively shortens the criti-
cal path, defined as the column-by-column sequence of
processing.

To empirically demonstrate these advantages, we conducted
some experiments, and Fig. 2 presents the performance of
Householder TSQR against the cuSOLVER SGEQRF routine for
matrix sizes m X 32. In scenarios where m is small enough to fit
the entire problem in the L1 cache of the GPU, TSQR exhibits
marginal improvement. However, as the problem size surpasses
the cache capacity, TSQR consistently outperforms SGEQRF
with an increasing margin. This superiority is attributed to the
combined effects of looser coupling and reduced data movement.

In Fig. 3, we also compare our proposed algorithm
with two emerging methods: Randomized Householder-
CholeskyQR [42] and Shifted CholeskyQR3 [29] on RTX
4090 GPU using FP64 precision. The matrix size is m x 32,
where m is as shown on the z-axis. For the Randomized
Householder-CholeskyQR method, the size of the random
matrix used is k£ x m with & = 100. Our proposed algorithm
achieves an average improvement of 1.1x over the Randomized

Matrix Size (Number of Rows)
TT0 76/ 117 no

120

Il Proposed QR Factorization
mm Randomized Householder-CholeskyQR
B Shifted CholeskyQR3

Elapsed Time (ms)

1024 2048 4096 8192

Fig. 3. Performance comparison of QR factorization using three different
methods: Proposed QR Factorization, Randomized Householder-CholeskyQR,
and Shifted CholeskyQR3. The z-axis represents the number of matrix rows,
with all matrices having a fixed column size of 32.

Householder-CholeskyQR method and 2.7x over the Shifted
CholeskyQR3 method. In testing Shifted CholeskyQR3
with matrices having singular values that follow geometric,
arithmetic, and Gaussian distributions, we observed that it
becomes unsolvable when the matrix size is excessively large.

2) Engineering a Fixed-Size Block QR in a Threadblock:
The TSQR algorithm effectively partitions an arbitrarily tall
and skinny matrix into fixed-size tiles, facilitating the opti-
mization of specific problems. In our approach, we present a
highly hand-optimized 256+32 Householder kernel designed for
a single threadblock, and multiple threadblocks can be launched
as needed. As these threadblocks operate independently, the
optimization focus remains on individual threadblocks rather
than their joint optimization.

The Householder QR factorization follows a column-by-
column processing structure. In each column iteration, the al-
gorithm computes the norm of the current column, scales it
by the inverse norm, and subsequently utilizes the current col-
umn for inner product and scaling/subtraction operations with
the remaining columns. The fundamental computations involve
inner-products of columns and element-wise operations, such
as scaling and subtraction. To effectively distribute the data and
workload across the 32 warps in the threadblock, two approaches
based on row or column distribution can be employed, as illus-
trated in Fig. 4.

In Fig. 4, the scheme on the left, used in [2] for Mod-
ified Gram-Schmidt, exhibits coordination challenges among
all warps due to inner products being performed on columns.
Additionally, when updating the remaining columns, all warps
must sequentially process them. On the right, a more effi-
cient mapping is presented, where all reductions are inter-warp,
leveraging the _ shfl down_sync primitive for register
exchange. This enables independent operation of warps when
updating the remaining columns, reducing the number of reduc-
tion operations from 32 to 2. Consequently, the right scheme for
Householder QR factorization is approximately 1.5x faster than
the left scheme, despite involving more arithmetic operations in
Householder QR factorization.

The performance of the GEMMs in TSQR can also bene-
fit from Tensor Cores. By simply replacing batched GEMMs

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

430 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

SSE=S

JoV N VRN <V

o S fn e |

T T TO

OrRrNW
warp0 threadO]]
warpl threadl]
warp2 (| thread2]
warp3 [[[| thread3]
| | |
| []
CICICIC] | [|
[[[] [| |
| []
CICIEIE] ==
[[[[] | []
| [|
H

CICICIC]
L[] [|
Fig. 4. Row-based data/work distribution (left) leads to inter-column depen-

dencies, while column-based distribution (right) enables efficient shuffling in
the QR factorization of a 256 x 32 tile.

with batched Tensor-Cores-based GEMMs, such as cuBLAS
cublasGemmStridedBatchedEx routine, a satisfactory
performance increase can be achieved.

3) Reconstruct Householder Vectors: Although TSQR can
accelerate the panel compared to cuSOLVER SGEQRF, a chal-
lenge arises: unlike cuSOLVER SGEQRF, TSQR provides the
explicit). In contrast, cuSOLVER SGEQRF yields Householder
vectors. Moreover, using the explicit) instead of Householder
vectors in further trailing matrix updates may lead to unstable
results. Therefore, developing an algorithm that can output
Householder vectors from the explicit () formed by TSQR is
essential. One solution is to reconstruct Householder vectors
from the explicit @) [43]. The idea is as follows: given an orthog-
onal matrix, () can be represented as Q =1 —Y x T x YT
(memory-efficient WY representation), and this equation can
also be modifiedto I — Q =Y x T x YT, Here, Y is a lower
triangular matrix, and 7" is an upper triangular matrix. Con-
sequently, this can be regarded as an LU factorization with
I-Q=LxU=(Y)x(TxYT). The paper [43] also re-
ports that the LU factorization provides a unique L and U, and
partial pivoting is unnecessary. In our algorithm, we factorize
the upper n x n part of the matrix I — (), and then we perform
a triangular solve to obtain the complete L matrix. After ob-
taining the Householder vectors L from the LU factorization,
we perform another triangular solve to construct W; refer to
Algorithm 2.

Ballard et al. perform an LU factorization on @ — S [43],
where S is a diagonal sign matrix corresponding to the sign
choices made inside the Householder QR algorithm. It’s impor-
tant to note that this step is essential to avoid rank deficiency
in the LU factorization. By combining this algorithm with our
TSQR implementation, we can achieve the panel factorization
that generates W and Y.

B. Recursive-Like Triangular Matrix Multiplications

The trailing matrix update process in the iterative variant
is the same as conventional GEMMs, where we use cuBLAS

Algorithm 2: Reconstruct WY Representation by Explicit
@ Generated From TSQR.

: function [W,Y] = ReconstructWY (Q)
[m,n] = size(Q);
I = eye(m,n);

1
2
3
4: A = I-Q;

5. [L1,U] = non_pivoting LU(A(1l:n,:));
6: L2 = A(n+l:m,:)/U;

7 Y=[L1;L2];

8 W=A/Y';

9: end

relative GEMM routines. However, for the recursive algorithm,
the trailing matrix update, as well as forming the W matrix,
involves the Householder matrix Y, which is a lower triangular
matrix. Considering the triangular matrix multiplication (TRMM)
as normal GEMMs is a waste of GPU resources since TRMM
has fewer arithmetic operations than GEMMs. Unfortunately,
there’s no available TRMM routine on Tensor Cores. Thus, we
introduce optimization techniques for TRMM in this section.

The TRMM operation also involves many GEMM operations
during computation. The conventional TRMM is computed by the
following formula [44]:

z
Cij =« Z AixBij + AiiBij
k=i+1
where ¢ and j denote the block index in C'. The A;j, By j represent
the GEMM operations, while A;; B;; corresponds to the TRMM
operation. However, when utilizing Tensor Cores, the conven-
tional variant encounters the same problem: the inside GEMMs
are not square and large enough if the blocksize is not carefully
selected. In this case, we can also use the recursive variant for
TRMM, and the formulation is expressed as follows:

[Cn | 012} _ [An |] [Bl_
Ca1 | Caa Az | Azo [Bg_
[C11 | C12] = [Au} [Bi1 | Bi2] @)

[021 | 022] = [A21 | A22] [%’%Z

= {Am} [Bi1 | Biz2] + |:A22} [Ba1 | Bas) ®)

(6)

Since A is a triangular matrix, A7 and Ass are also trian-
gular matrices. As a result, the equations [A11][B11|Bi2] (7)
and [Asz][B21|B22] (8) can also be regarded as subproblems
of TRMM, while [A21][B11|B12] (8) is a GEMM that can be
executed on Tensor Cores. By using the recursive algorithm,
the inside GEMMs can be ‘compressed’ to be more square and
larger to be executed efficiently on Tensor Cores.

Unlike QR factorization, TRMM doesn’t have strict data de-
pendency, so most of the computations can be run in parallel.
Thus, even though we’re using the recursive formulation to
illustrate our idea, the real implementation still uses iterations to
bring more parallelism. Fig. 5 shows a visual representation of

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES 431

Matrix A

Never
Touched

. 1t Iteration

2nd Tteration

. 3t Jteration

. 4t Tteration

Fig. 5. The steps of computing recursive TRMM in parallel.

Algorithm 3: Recursive TRMM With Cutoff Size nb.

1: function [C] = tc_trmm (A)
2: [n,k] = size(d);
3:

&perent; BatchedGEM M ((m,n, k), ptr(A), ptr(B),

4: &perent;of fsetof A, of fsetof B)

5: &perent; 1stiteration

6: C = BatchedGEMM ((nb,n,nb) ,A B,

7 nbx (1+1da) ,nb) ;

8 1=1;

9: while(m/nb/i/2>=1)

10: &perent; 2ndton — thiteration

11: Ci =
BatchedGEMM ((isnb, i*nb, k) , A+i
*nb, B,

12: 2*xiknb* (1+1da), 2*i*nb);

13: 1=1x%2;

14: end

15: ¢ = Accumulate(C1,C2,...,Cn);

16: end

this process. The computations involving the diagonal blocks in
matrix A are first executed, and the results are stored in matrix
C for subsequent accumulations. Subsequently, the off-diagonal
blocks of matrix A are processed sequentially. See Algorithm 3
for more implementation details. Note that this algorithm works
for all three precisions; the only difference is the working
precision in BatchedGEMM in Algorithm 3.

1) Performance Evaluation on TRMM: To illustrate the ef-
ficiency of the proposed TRMM algorithm, we conducted the
same experiments on A100, RTX 4090, and A6000 GPUs
to show the superior performance of our TRMM compared to
cuBLAS. In the recursive variant, both Ay = (As — YW Ay)
and W = [Wy| — W1 Y{T Wy + W] (2) involve square TRMM.
Therefore, we only provide the square TRMM performance here.
Fig. 6(a) shows the FP16 and FP32 performance of the proposed
TRMM using TC-GEMMs and TC-SGEMMs, respectively. For
FP16 precision, compared to the cublasGemmEx routine,

—FP16 TRMM on A100 FP32 TRMM on A100 ---Peak FP16 Performance:
—cuBLAS TC-GEMM on A100 —cuBLAS TRMM on A100 - - -Peak FP32 Performance

250 - 7
200 - 1e0x 210x 219X 224x 230x 2.27x 193x
» 1.41x

o

O 150 - |

-

L

Fiod T

50 2.16x 223x 2.18x 2.26x 2.26x 2.25x 2.24x 2.36X -

g====-

8192 16384 24576 32768 40960 49152 57344 65536
Matrix size (m = n)
(a) FP16 and FP32 TRMM performance comparison on A100 GPU

—Proposed TRMM on 4090 — Proposed TRMM on A6000 - - -Peak 4090 Performance
—cuBLAS TRMM on 4090 —cuBLAS TRMM on A6000 ---Peak A6000 Performance!

8

6 [N |
» .22x
o
Q4
Ll—L 4.67x 4.43x 4.69x

. .00% 4.35x - A43x 4.
212 3 18y 3.60x 3.84x 3.97x |
2.54x
[1.e5x—
Pt

) O X L Q \) © I L Q
,LQB(ng 6\& %\% ,\Q'Lb‘ ,\fﬂz‘b N bfb'z’ \6'5% ’\%b"b 'LQB(%
Matrix size (m = n)
(b) FP64 TRMM performance comparison on RTX 4090 and A6000 GPU

Fig. 6. FP16/32 TRMM performance comparison on A100 GPU (upper
figure); FP64 TRMM on RTX 4090 and A6000 GPU (lower figure)

our TRMM can achieve over 2x speedup when the matrix is
large (ideally the speedup is 2x, as cublasGemmEx performs
normal GEMMs, thereby doubling the arithmetic operations),
and the extra speedup above 2x proves the better utilization of
Tensor Cores. For FP32 TRMM, benefiting from TC-GEMMs,
we are also able to achieve over 2x speedup compared to the
cublasStrmm routine. Finally, on RTX 4090 and A6000
GPUs, because the FP64 precision computing capacities are
limited on these GPUs, the TC-DGEMMs are over 4x faster
than cublasDgemm. Thus, with the Tensor-Cores-based TRMM
acceleration, the trailing matrix update process can be even
faster in the recursive variant, and we will show the final QR
factorization performance in the experiments section.

C. Other Optimization Techniques

There are also some other small but non-trivial optimization
techniques that can also bring another 10%-20% speedup in
terms of trailing matrix update, including data type conversion,
kernel scheduling, and zero padding.

1) Fast Data Type Convert in FP16 Precision Implemen-
tation: While the cublasGemmEx routine supports FP32 in-
puts, the performance diminishes significantly when compared
to utilizing FP16 inputs, notwithstanding the achievement of
identical final accuracy. In order to optimize the performance of
FP16 TC-GEMMs, we adopt a proactive approach by converting

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

432 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

the FP32 matrix to an FP16 matrix. The conversion process is
primarily constrained by memory bandwidth rather than com-
putational resources. Therefore, an efficient conversion process
holds the potential to markedly reduce the overhead associated
with TC-GEMM operations.

The conventional method for the data conversion process
involves mapping one element conversion to one thread on
the GPU. However, this method is hampered by the latency
associated with device memory load, resulting in a degradation
of throughput. To alleviate the latency stemming from device
memory load, we employ optimization techniques, including
software pipelining and the utilization of 128-bit device memory
load/store instructions. This strategy entails partitioning the
input matrix into submatrices, converting FP32 elements to
FP16, and subsequently storing the FP16 submatrix back into
device memory. This approach effectively utilizes up to 80%
of the A100 GPU’s device memory bandwidth, representing a
noteworthy enhancement from the 55% utilization achieved with
the naive method.

Based on multiple evaluations conducted on a half-precision
matrix of size 65536 x 65536, the average total time taken
for decomposition before applying fast data type convert was
3417.82ms, with the data type conversion taking 309.64ms.
Following the implementation of this technique, both the total
decomposition time and the duration for data type conversion
were reduced to 3250.51ms and 142.33ms, respectively. Con-
sequently, the data type conversion process constitutes approxi-
mately 10% of the time allocated for the trailing matrix update,
while the enhanced data type conversion method contributes
approximately a 5% acceleration to the overall trailing matrix
update process.

2) CUDA Kernel Scheduling: In Algorithm 3, it is evident
that batched GEMMs are utilized to augment parallelism in
the recursive formulation. However, it is apparent that, during
the iterations, the batched GEMMs are executed sequentially
despite their potential for parallel execution. This lack of paral-
lelism becomes particularly constraining for performance when
dealing with small matrix sizes. To rectify this limitation, we
have developed a custom kernel tailored for small matrix sizes,
allowing us to exert control over the behavior of the CUDA
kernel and maximize parallelism.

For example, in the first and second iterations of Algorithm 3,
when dealing with relatively small matrices, we launch n/nb
thread blocks to perform the batched TRMM and n/nb/2 thread
blocks to execute the batched GEMMs in the second itera-
tion. For subsequent computations, we leverage CUDA streams
to synchronize their executions and activate Tensor Cores to
the fullest extent possible. This approach ensures improved
parallelism and better utilization of computational resources,
especially when dealing with smaller matrix sizes.

According to our experiments, for a FP32 precision matrix
size of 65536 x 65536, the average time without kernel schedul-
ing optimizationis 13153.24ms on A100 GPU, while the average
decomposition time after applying CUDA kernel scheduling is
12218.22ms. Depending on the matrix size, this strategy can
contribute an overall acceleration ratio of 5% to 10% to the
algorithm.

3) Zero Padding: The most recent version of cuBLAS now
accommodates arbitrary GEMM sizes on Tensor Cores; never-
theless, certain constraints continue to hinder complete utiliza-
tion. In our experimentation on the A100 GPU, the performance
of our TRMM operation on a matrix size of 30,000 x 30,000
attains 205 TFLOPs, whereas a matrix size of 30,001 x 30,001
yields only 18 TFLOPs. In response to this limitation, we
have devised a strategy to augment overall performance by
expanding the original matrix with zeros in the additional blocks.
Specifically, for irregular matrices (with an odd number of rows
and columns), we append a zero matrix to the bottom-right
corner and fill the top-right and bottom-left areas with zeros,
expanding the matrix so that both the row and column counts are
multiples of 4. This approach enables more efficient utilization
of Tensor Cores, mitigating the performance drop observed with
non-optimized matrix sizes. For example, in the case of the
previously mentioned 30,000 x 30,001 matrix, after applying
zero padding to expand it to 30,000 x 30,004, testing showed
that performance improved to approximately 180 TFLOPS.
Depending on the shape of the matrix, this method can achieve
nearly a 10x peak performance improvement. Considering the
frequency of its application in our algorithm, we estimate its
overall acceleration effect to be around 5%.

VI. EXPERIMENTAL EVALUATION

In this section, we perform a series of experiments to assess
the performance of the proposed Householder QR factorization
utilizing Tensor Cores across various precision modes, namely
FP16, FP32, and FP64. The experiments are conducted on
an A100-PCIe GPU with 80 GB of device memory for FP16
and FP32 precision, while an RTX 3090 GPU with 24 GB of
device memory is employed for FP64 precision. The CUDA
version utilized is 12.2, encompassing a C++ compiler along
with cuBLAS and cuSOLVER libraries.

Furthermore, we conduct experiments to elucidate accuracy
issues across all three precisions. Random matrices with di-
verse condition numbers and distributions are generated using
MAGMA 2.7.2, providing a comprehensive evaluation of the
proposed Householder QR factorization method under varying
conditions.

A. Performance Evaluation

Given that TC-DGEMMs require the utilization of INTS8
Tensor Cores, while TC-SGEMMs and TC-GEMMs merely
necessitate FP16 Tensor Cores, we structured our discussions
based on Tensor Cores precision and architectures. Specifically,
we selected two types of GPUs: A100-like GPUs (including
GPUs such as H100 and V100), whose SGEMMs can be re-
placed by TC-SGEMMs, while their DGEMMs are faster than
TC-DGEMMs; and RTX 3090-like GPUs (including GPUs such
as RTX 4090 and A6000), which have a much weaker FP64
computing capacity than FP32 and FP16.

In Fig. 7, we depict the performance of our implemented
FP16 and FP32 precision QR factorization using Tensor Core

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES 433

x10*

mmPanel 2.06x

N

[EITC-Panel
EETC-GEMM

N

2.35x
[BEcuSOLVER|

=
()

-

8.67x 7.79x 6.29x

2.70x 4.03x
481x 423 B
! 3.57x

| 2.74x
: 2.28x

1.00x/ | 1.22x/ | 1.45x 280
0

28

210 Al 212
Matrix Size (Number of Columns)

Elapsed Time (ms)

o
(%)

(a) FP16 and FP32 (Tensor Cores enabled) Householder QR factorization
performance comparison on A100 GPU, the matrix size is m X m, where
mxn = 232

4000 T ;
WlPanel 1.11
ENSGEMM
73000 [ITC-Panel 2.77x
£ ENTC-GEMM 1.13x
° NCUSOLVER 2.75x
E 2000 1.3
o 1. 545
o} 2.00x 47X
& 414x 339x 296x 251x
< 1.84x
w 1000 1.57x
1.02x18 1.03x8 1.15x8 1 31

29 210 11 212 1

Matrix Size (Number of Columns)
(b) FP16 and FP32 (Tensor Cores disabled) Householder QR factorization

performance comparison on RTX 3090 GPU, the matrix size is m X n, where
mxn = 230

Fig. 7. Overall QR factorization performance comparison between the pro-
posed FP16 QR, FP32 QR and cuSOLVER’s FP32 QR. The numbers on
cuSOLVER bars denote the speedup of the proposed FP32 QR and cuSOVLER’s
FP32 QR, and the numbers on FP32 QR bars denote the speedup of the proposed
FP16 QR compared to the proposed FP32 QR

alongside cuSOLVER routines on A100 GPU * and RTX 3090
GPU,> as well as the speedup (the numbers on the 3rd bar
denote the speedup of our FP32 QR compared to cuSOLVER,
the numbers on the Ist bar denote the speedup of our FP16
QR compared to our FP32 QR) of our approach compared to
cuSOLVER relative routines. The matrix sizes, from left to right,
represent the number of columns (n), while the number of rows
(m) decreases from 224 to 216, In other words, the matrix shapes
change from tall and skinny to square.

On one hand, when the matrix is square or nearly square,
the acceleration is mainly from GEMMSs using Tensor Cores;
therefore, the FP16 QR is 4.03x faster than the proposed FP32
QR. Also, compared to cuSOLVER SGEQRF, our FP32 can
still have a 2.06x speedup benefit from TC-SGEMMs in the
recursive variant. On the other hand, when the matrix is tall and

“From left to right bars, the TFLOPs of the proposed FP16 and FP32 QR
factorization are [2.4, 4.7, 8.9, 16.7, 30.4, 50.6, 70.6, 107.3, 109.8] for FP16
precision (peak 312.0), and [2.2, 3.9, 6.1, 9.1, 14.3, 21.0, 26.6, 30.4, 28.5] for
FP32 precision (peak 19.5)

SFrom left to right bars, the TFLOPs of the proposed FP16 and FP32 QR
factorization are [0.4, 0.8, 1.6, 3.1, 5.7, 10.2, 16.0, 26.2, 35.0, 37.4] for FP16
precision (peak 71.0), and [0.5, 0.9, 1.5, 2.7, 4.4, 6.5, 8.7, 11.3, 14.0, 15.3] for
FP32 precision (peak 35.5)

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

1.03x
ElPanel
8000 EGEMM
?,E; [cuSOLVER 1.14x
"o 6000 - 1
£
[
B 4000
172
Q
©
% 2000 - 1
0 L
27 28 29 210 211 212 213 214 215

Matrix Size (Number of Columns)

(a) FP64 (Tensor Cores disabled) Householder QR factorization performance
comparison on A100 GPU, the matrix size is m X n, where m * n = 231
x10*

3

BEGEMM
[cuSOLVER

‘-Panel

g
3

N

Elapsed Time (ms)
- 3]

e
3

26 o7 28 29 510 o1 212 513 214
Matrix Size (Number of Columns)

(b) FP64 (Tensor Cores enabled) Householder QR factorization performance
comparison on RTX 3090 GPU, the matrix size is m x n, where m xn = 229

Fig. 8. Overall QR factorization performance comparison between the pro-
posed FP64 QR, cuSOLVER FP32 QR on A100 and RTX 3090 GPU. The
numbers on cuSOLVER bars denote the speedup of the proposed FP64 QR
compared to cuSOVLER’s FP64 QR

skinny, the TSQR contributes more to the performance, while
the Tensor Cores cannot bring large acceleration. That is the
reason why the FP16 QR is only 1.09x faster than FP32 QR,
but compared to cuSOLVER SGEQRF, the proposed FP32 QR
exhibits significant acceleration at a factor of 8.67x.

The impact of the TSQR is more pronounced on the RTX
3090 GPU (Fig. 7(b)), as only TSQR involves FP32 precision.
When the matrix is tall and skinny, the proposed FP32 QR is
4.14x faster than cuSOLVER. On the contrary, as Tensor Cores
are not utilized, the acceleration is only 1.11x, which is from
TSQR.

The FP64 precision QR factorization performance exhibits
slight differences compared to FP32 and FP16 precision on
both A100 and RTX 3090 GPUs (Fig. 8 ©). On the A100 GPU,
the DGEMMs utilizing INT8 Tensor Cores do not outperform
cuBLAS DGEMMs. Consequently, the acceleration is solely de-
rived from TSQR, with tall and skinny matrices achieving up to a
6.22x speedup compared to the cuSOLVER DGEQRF routine, as
illustrated in Fig. 8(a). On the RTX 3090 GPU, TC-DGEMMs
can be as much as 7x faster than cuBLAS DGEMMs. Even
for square matrices, the proposed FP64 QR factorization can

©From left to right bars, the TELOPs of the proposed FP64 QR factorization
are [0.1,0.2, 0.5, 0.9, 1.8, 3.4, 6.0, 10.1, 13.4] on A100 GPU (peak 19.5), and
[0.03,0.06, 0.10, 0.16, 0.26, 0.31, 0.39, 0.45, 0.47. 0.51] RTX 3090 GPU (peak
0.56)

434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

achieve a 2.67x speedup, as shown in Fig. 8(b). However, it’s
crucial to address the performance disparity regarding tall and
skinny matrices on the RTX 3090. Compared to the A100 GPU,
the tall and skinny speedup is much smaller (1.27x vs. 6.22x).
This discrepancy arises due to significant variations in peak FP64
performance between these two GPUs (19.5 TFLOPs vs. 0.55
TFLOPs). Consequently, on the RTX 3090 GPU, communica-
tion overhead is more manageable to some extent. Additionally,
it’s noteworthy that cuSOLVER DGEQRF is not well-optimized
on the A100 GPU, utilizing only 6%o of FP64 peak performance,
while on the RTX 3090 GPU, the utilization percentage is 6%.

To sum up, our approaches showcase versatility, delivering
significant acceleration across different types of GPUs and com-
putation precisions. Both TSQR and Tensor Cores contribute to
enhancing the QR factorization performance. The distinction
lies in the fact that TSQR plays a more substantial role when
dealing with tall and skinny matrices, whereas Tensor Cores
exhibit greater significance in the context of square matrices.
This adaptability underscores the effectiveness of our proposed
methodologies in optimizing QR factorization across diverse
scenarios and hardware configurations.

B. Error Analysis and Evaluation

There are two types of errors in QR factorization: backward

error, defined as %; and orthogonality error, defined as

_OTO . .
HI?ViQH' Extensive studies have been conducted to address QR

factorization errors [45], and the error bounds of Gram-Schmidt
and Householder QR factorization are presented in Table II.
In the context of the proposed QR factorization in this paper,
two main differences compared to conventional Householder
QR factorization are highlighted: 1) the replacement of panel
QR factorization with TSQR; and 2) the utilization of Tensor-
Cores-based GEMMs.

The reconstruction of WY representation in TSQR has been
proven to have the same error bound as conventional panel QR
factorization [43]. Moreover, studies on the errors introduced
by Tensor Cores [46] demonstrate that they have a reliable error
bound compared to pure FP16 GEMMs, as Tensor Cores use
FP32 precision for accumulation. Additionally, SGEMMs and
DGEMMs using Tensor Cores also exhibit the same error bounds
as default cuBLAS S/DGEMMs [20], [21].

Therefore, the backward error in the proposed Householder
QR factorization will be bounded by:

_ A= QR

Ey, = < ce

1Allr - =7
where c is a constant number, and ¢, is the unit round-off error
of different precisions. The orthogonality error is bounded by:

- Q"Qllr
N
Empirically speaking, the errors in FP16, FP32, and FP64 pre-

cision are close to le — 4, 1le — 6, and le — 16, respectively.
Table 1V displays the experimental backward and orthogo-

nality errors for various types of matrices, each with a size of

4096 x 4096. These matrices encompass uniform distribution,

E, = < cep

TABLE IV
THE ACCURACY RESULTS OF THE PROPOSED QR FACTORIZATION ON
DIFFERENT PRECISIONS AND MATRIX TYPES ON A100 GPU (FP16 AND FP32)
AND RTX 3090 GPU (FP64) USING TENSOR CORES

Matrix Uniform | Normal Arith Geo
Error
FP64 Backward 8.9E-16 1.3E-15 | 1.8E-15 | 2.5E-15
FP64 Orthogonality | 9.0E-17 1.3E-16 | 1.7E-16 | 2.5E-16
FP32 Backward 7.6E-07 8.5E-07 | 1.3E-06 | 1.9E-06
FP32 Orthogonality | 3.1E-07 3.8E-07 | 4.7E-07 | 6.3E-07
FP16 Backward 5.1E-04 | 4.3E-04 | 5.4E-04 | 6.4E-04
FP16 Orthogonality | 8.7E-05 | 9.2E-05 | 9.1E-05 | 9.3E-05
~—RGSQRF [I-Q"ql/n
10° ~~RHOUGQR [|-Q"Ql/n
108 SGEQRF [|I-Q"Ql/n
107
10°
[
310°
L
103
102
107
10? 10* 10° 108 100 10"
Condition Number
Fig. 9. QR factorization orthogonality accuracy: FP16 recursive Gram-

Schmidt QR (RGSQRF) vs. FP16 recursive Householder QR (RHOUQR) vs.
cuSOVLER SGEQREF, matrix size 8192x4096, SVD geometric distribution.

normal distribution, SVD arithmetic distribution, and SVD ge-
ometric distribution (condition number 1e4). It is evident from
the table that both the backward errors and orthogonality errors
fall within the bounds of unit round-off error.

In comparison to [2], which implements Gram-Schmidt
QR factorization, the Householder QR factorization demon-
strates significantly superior orthogonality. Fig. 9 illustrates
that cuSOLVER SGEQRF and the proposed FP16 recursive
Householder QR factorization exhibit full orthogonality up
to working precision. In contrast, the FP16 recursive Gram-
Schmidt QR factorization (RGSQRF) experiences a linear
degradation in orthogonality with the increase of x(A). Al-
though there exists a remedy for RGSQRF to restore its
orthogonality error up to working precision, known as re-
orthogonalization, our additional experiments unfortunately re-
veal that re-orthogonalization is effective only for simpler cases,
such as matrices with SVD arithmetic distribution, and not for
those with geometric distribution.

More specifically, the improved orthogonality results in a
more effective preconditioner for solving linear least square
problems (LLS solver) (Section III-B in our prior paper [2]
elaborates on the direct method and the iterative method). Fig. 10
presents a performance comparison between the direct method
using cuSOLVER SGEQRF and the iterative method using
RGSQRF and RHOUQR as preconditioners. As per our earlier
investigation (Section IV-B.1 in [2]), for simpler cases character-
ized by small condition numbers and favorable singular value
distributions, employing Gram-Schmidt QR factorization as a
preconditioner is sufficient to achieve satisfactory LLS solver
performance compared to the direct method using cuSOLVER.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

LENG et al.: HIGH PERFORMANCE HOUSEHOLDER QR FACTORIZATION ON EMERGING GPU ARCHITECTURES USING TENSOR CORES 435

3 x10*
mcuSOVLER SGEQRF
25¢ =Direct Solve 1
“RGSQRF
2 =mCGLS using RGSQRF
=RHOUQR

=CGLS using RHOUQR

Elapsed Time (ms)
- S

4.42x
0.5
6.13x
0 p—
65536x65536 4194304x1024
Matrix Size
Fig. 10. The performance comparison on solving single precision linear

least square problem using direct method (cuSOVLER SGEQREF) and iterative
methods using RGSQRF and RHOUQR as preconditioner. The matrix sizes are
65536x65536 and 4194304 x 1024 and the condition number is 1e6 with SVD
geometric distribution on A100 GPU.

However, in the face of more challenging matrices, such as those
with SVD geometric distribution and a condition number of 1e6,
the CGLS with RGSQRF preconditioner becomes considerably
more computationally expensive than in simpler cases, and
at times, it is slower than the direct method. In contrast, the
proposed FP16 precision Householder QR factorization offers
a significantly improved preconditioner, resulting in an overall
speedup of 4.42x and 6.13x compared to the direct LLS solver for
matrix sizes 65536 x 65536 and 4194304 x 1024, respectively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we delve into the efficient implementations
of QR factorization with a focus on tall and skinny matrices,
incorporating Tensor Cores acceleration. The Householder QR
factorization is partitioned into two variants: one involves QR
factorization without Tensor Cores, utilizing FP64 precision on
A100 GPU and FP32 precision on RTX 3090 GPU; the other
employs Tensor Cores, encompassing FP16 and FP32 precision
on A100 GPU and FP16 and FP64 on RTX 3090 GPU. For the
non-Tensor-Cores QR factorization, only TSQR is employed, as
TC-S/DGEMMs do not yield any speedup in the trailing matrix
update process. In the Tensor-Cores-based QR factorization,
TSQR and the recursive variant are utilized, as the recursive
approach can facilitate larger and square GEMMs to capitalize
on the benefits of Tensor Cores.

In comparison to our prior work, this paper extends the mod-
ified Gram-Schmidt QR factorization to Householder QR fac-
torization and leverages customized Tensor-Cores-based TRMM
to exploit the triangular property of Householder matrices.
Additionally, we expand the half precision to include single
and double precision by harnessing Tensor Cores to accelerate
SGEMMs and DGEMMs.

Our future endeavors will focus on scaling the problem to
factorize much larger matrices. Conventional scalar QR fac-
torization routines, such as ScaLAPACK [47], MAGMA, and
cuSOVLERMG,’ are not compatible with Tensor Cores. With

"https://docs.nvidia.com/cuda/cusolver/index.html#using-the-cusolvermg-
api

Tensor Cores in play, the bottleneck may shift from compute-
bound to memory-bound [48]. This implies that the overall work-
flow of QR factorization needs to be redesigned to mitigate the
time cost associated with data movement during computations.

REFERENCES

[1] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative
refinement solvers,” in Proc. IEEE Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2018, pp. 603—613.

[2] S.Zhang, E. Baharlouei, and P. Wu, “High accuracy matrix computations
on neural engines: A study of QR factorization and its applications,” in
Proc. 29th Int. Symp. High- Perform. Parallel Distrib. Comput., 2020,
pp. 17-28.

[3] S. Zhang, R. Shah, H. Ootomo, R. Yokota, and P. Wu, “Fast symmetric
eigenvalue decomposition via WY representation on tensor core,” in Proc.
28th ACM SIGPLAN Annu. Symp. Princ. Pract. Parallel Program., 2023,
pp.- 301-312.

[4] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, “Communication-
avoiding QR decomposition for GPUs,” in Proc. 2011 IEEE Int. Parallel
Distrib. Process. Symp., 2011, pp. 48-58.

[5] T. NVIDIA, “Nvidia tesla v100 GPU architecture,” NVIDIA, Tech. Rep.
1, 2017. [Online]. Available: https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

[6] J. Burgess, “Rtx on—the nvidia turing GPU,” IEEE Micro, vol. 40, no. 2,
pp. 3644, Mar./Apr. 2020.

[7] NVIDIA, “Nvidia h100 tensor core GPU architecture,” NVIDIA, Tech.
Rep. 1, 2023. [Online]. Available: https://resources.nvidia.com/en-us-
tensor-core

[8] J. Choquette, “NVIDIA Hopper h100 GPU: Scaling Perform,” IEEE
Micro, 2023.

[9]1 D. Yan, W. Wang, and X. Chu, “Demystifying tensor cores to optimize
half-precision matrix multiply,” in Proc. 2020 IEEE Int. Parallel Distrib.
Process. Symp., 2020, pp. 634-643.

[10] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA volta GPU architecture via microbenchmarking,” 2018, arXiv:
1804.06826.

[11] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“NVIDIA A100 tensor core GPU: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29-35, Mar./Apr. 2021.

[12] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
GPUSs,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture,
2019, pp. 359-371.

[13] Y. Wang, B. Feng, and Y. Ding, “QGTC: Accelerating quantized graph
neural networks via GPU tensor core,” in Proc. 27th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., 2022, pp. 107-119.

[14] B.Feng, Y. Wang, T. Geng, A. Li, and Y. Ding, “APNN-TC: Accelerating
arbitrary precision neural networks on ampere GPU tensor cores,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2021, pp. 1-13.

[15] F. Lopez and T. Mary, “Mixed precision LU factorization on GPU tensor
cores: Reducing data movement and memory footprint,” in Proc. Int. J.
High Perform. Comput. Appl., 2020, Art. no. 10943420221136848.

[16] A. Sorna, X. Cheng, E. D’azevedo, K. Won, and S. Tomov, “Optimizing
the fast fourier transform using mixed precision on tensor core hardware,”
in Proc. 2018 IEEE 25th Int. Conf. High Perform. Comput. Workshops,
2018, pp. 3-7.

[17] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-M. Hwu, “Accelerating
reduction and scan using tensor core units,” in Proc. ACM Int. Conf.
Supercomputing, 2019, pp. 46-57.

[18] X. Liu et al., “Toward accelerated stencil computation by adapting tensor
core unit on GPU,” in Proc. 36th ACM Int. Conf. Supercomputing, 2022,
pp. 1-12.

[19] S.Zhang, R. Shah, and P. Wu, “Tensorsvm: Accelerating kernel machines
with tensor engine,” in Proc. 34th ACM Int. Conf. Supercomputing, 2020,
pp. 1-11.

[20] H. Ootomo and R. Yokota, “Recovering single precision accuracy from
tensor cores while surpassing the FP32 theoretical peak performance,” Int.
J. High Perform. Comput. Appl., vol. 36, no. 4, pp. 475-491, 2022.

[21] H. Ootomo, K. Ozaki, and R. Yokota, “DGEMM on integer matrix multi-
plication unit,” 2023, arXiv:2306.11975.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cusolver/index.html#using-the-cusolvermg-api
https://docs.nvidia.com/cuda/cusolver/index.html#using-the-cusolvermg-api

436

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 3, MARCH 2025

C. Bischof and C. Van Loan, “The WY representation for products
of householder matrices,” SIAM J. Sci. Statist. Comput., vol. 8, no. 1,
pp. s2—s13, 1987.

S. Tomov, R. Nath, P. Du, and J. Dongarra,
users’ guide,” ICL UTK, 2011. [Online].
https://icl.utk.edu/projectsfiles/magma/docs/magma-v02.pdf
Z. Drmac, “Algorithm 977: A QR—preconditioned QR SVD method for
computing the SVD with high accuracy,” ACM Trans. Math. Softw., vol. 44,
no. 1, pp. 1-30, 2017.

P. Luszczek, H. Ltaief, and J. Dongarra, “Two-stage tridiagonal reduction
for dense symmetric matrices using tile algorithms on multicore archi-
tectures,” in Proc. 2011 IEEE Int. Parallel Distrib. Process. Symp., 2011,
pp. 944-955.

M. Gates, S. Tomov, and J. Dongarra, “Accelerating the SVD two stage
bidiagonal reduction and divide and conquer using GPUSs,” Parallel Com-
put., vol. 74, pp. 3-18, 2018.

H. Bouwmeester, M. Jacquelin, J. Langou, and Y. Robert, “Tiled QR
factorization algorithms,” in Proc. 2011 Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2011, pp. 1-11.

I. Yamazaki, S. Tomov, and J. Dongarra, “Mixed-precision cholesky QR
factorization and its case studies on multicore CPU with multiple GPUs,”
SIAM J. Sci. Comput., vol. 37, no. 3, pp. C307-C330, 2015.

T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, and Y. Yanag-
isawa, “Shifted cholesky QR for computing the QR factorization
of ill-conditioned matrices,” SIAM J. Sci. Comput., vol. 42, no. 1,
pp. A477-A503, 2020.

P.-G. Martinsson, G. Quintana-Orti, N. Heavner, and R. van de Geijn,
“Householder QR factorization with randomization for column pivoting
(HQRRP),” SIAM J. Sci. Comput., vol. 39, no. 2, pp. C96-C115, 2017.

J. W.Demmel, L. Grigori, M. Gu, and H. Xiang, “Communication avoiding
rank revealing QR factorization with column pivoting,” SIAM J. Matrix
Anal. Appl., vol. 36, no. 1, pp. 55-89, 2015.

E. Anderson et al., LAPACK Users’ Guide, vol. 9. Philadelphia, PA, USA:
SIAM, 1999.

D.B. Gaji¢, R. S. Stankovié, and M. Radmanovic, “A performance analysis
of computing the LU and the QR matrix decompositions on the CPU and
the GPU,” Int. J. Reasoning-Based Intell. Syst., vol. 9, no. 2, pp. 114-121,
2017.

H. Ootomo and R. Yokota, “TSQR on tensor cores,” in Proc. 29th Int. Conf.
High Perform. Comput., Netw., Storage, Anal., Research Poster, 2019,
doi: 10.1145/1122445.1122456.

D. Vanderstraeten, “A stable and efficient parallel block gram-schmidt
algorithm,” in Proc. Euro-Par’99 Parallel Process.: 5th Int. Euro-Par
Conf.Toulouse, France, Springer, Aug. 31-Sep. 03, 1999, pp. 1128-1135.
E. Carson et al., “An overview of block gram-schmidt methods and their
stability properties,” 2020, arXiv: 2010.12058.

L. Giraud, J. Langou, M. Rozloznik, and J. V. D. Eshof, “Rounding
error analysis of the classical Gram-Schmidt orthogonalization process,”
Numerische Mathematik, vol. 101, no. 1, pp. 87-100, 2005.

A. Kietbasiniski, “Analiza numeryczna algorytmu ortogonalizacji Grama-
Schmidta,” Mathematica Applicanda, vol. 2, no. 2, pp. 15-35, 1974.

A Bjorck, “Solving linear least squares problems by Gram-Schmidt
orthogonalization,” BIT Numer. Math., vol. 7, no. 1, pp. 1-21, 1967.

S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter, “Nvidia
tensor core programmability, performance & precision,” in Proc. 2018
1EEE Int. parallel Distrib. Process. Symp. Workshops, 2018, pp. 522-531.
S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65-76, 2009.

A.J. Higgins, D. B. Szyld, E. G. Boman, and I. Yamazaki, “Analysis of
randomized householder-cholesky QR factorization with multisketching,”
2023, arXiv:2309.05868.

G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and
E. Solomonik, “Reconstructing householder vectors from tall-skinny
QR in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., 2014,
pp. 1159-1170.

L. Wang, W. Wu, Z. Xu, J. Xiao, and Y. Yang, “BLASX: A high perfor-
mance level-3 BLAS library for heterogeneous multi-GPU computing,” in
Proc. 2016 Int. Conf. Supercomputing, 2016, pp. 1-11.

M. P. Connolly and N. J. Higham, “Probabilistic rounding error analysis
of householder QR factorization,” SIAM J. Matrix Anal. Appl., vol. 44,
no. 3, pp. 1146-1163, 2023.

“Magma
Available:

[46]

[47]

[48]

P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, “Mixed
precision block fused multiply-add: Error analysis and application to GPU
tensor cores,” SIAM J. Sci. Comput., vol. 42, no. 3, pp. C124-C141, 2020.
L. S. Blackford et al., ScaLAPACK Users’ Guide, vol. 4. Philadelphia, PA,
USA: SIAM, 1997.

S.Zhang and P. Wu, “Recursion brings speedup to out-of-core tensorcore-
based linear algebra algorithms: A case study of classic gram-schmidt QR
factorization,” in Proc. 50th Int. Conf. Parallel Process., 2021, pp. 1-11.

Yuhan Leng is currently working toward the master’s
degree in computer science and technology with the
University of Electronic Science and Technology of
China. Her research interests primarily include high
performance computing and numerical linear algebra.

Gaoyuan Zou received the bachelor’s degree from
Southwest Jiaotong University. He is currently work-
ing toward the master’s degree with the School of
Computer Science and Engineering, University of
Electronic Science and Technology of China. His
interests lie in high performance computing and nu-
merical linear algebra.

Hansheng Wang received the engineering bachelor’s
degree from North China Electric Power University,
in 2011. He is currently working toward the PhD
degree with the School of Computer Science and
Engineering, University of Electronic Science and
Technology of China. His research interests include
high-performance computing, artificial intelligence,
and the acceleration and practical application of large
models.

Panruo Wu received the PhD degree from the Univer-
sity of California Riverside in 2016. He is an associate
professor of computer science with the University of
Houston. Prior to joining UH, he was a postdoc re-
search with Innovative Computing Laboratory at Uni-
versity of Tennessee Knoxville. His research interests
include matrix/tensor computations and numerical
optimizations with large scale and on accelerators and
he received NSF CAREER award, in 2021.

Shaoshuai Zhang received the PhD degree from the
University of Houston in 2021. He is an assistant pro-
fessor of School of Computer Science and Engineer-
ing, University of Electronic Science and Technology
of China. Prior to joining UESTC, he was a postdoc
research with Yokota Lab with the Tokyo Institute
of Technology. His research interests include high
performance computing, numerical linear algebra and
numerical methods.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 23,2025 at 08:04:46 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1145/1122445.1122456

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

